基于自适应图的半监督流形正则化分类学习框架研究
[Abstract]:Semi-supervised classification learning is an important research field in machine learning. At present, a large number of semi-supervised classification learning algorithms have been proposed one after another. But in real-life learning tasks, it is difficult for researchers to decide which method to choose. As far as we know, there is no relevant theoretical or empirical guidance. In addition, manifold regularization (Manifold regularization,MR) provides a powerful learning framework for semi-supervised classification learning, but there are two problems existing in traditional manifold regularization methods: 1) Manifold regularization methods usually construct manifold structure graphs in advance; And in the process of learning fixed. The construction of Manifold structure graph and the process of classification learning are independent of each other, and the graph is not necessarily beneficial to the subsequent classification. 2) there are some adjustable parameters in the process of graph construction. However, there is still a lack of effective solutions to parameter selection in semi-supervised learning, which brings some obstacles to the construction of manifolds. Therefore, the content of this paper mainly includes the following two parts: firstly, in order to give empirical guidance on the selection of semi-supervised classification methods, the typical semi-supervised classification methods are compared. Because the existing semi-supervised classification methods can be divided according to the data distribution hypothesis, this paper studies and compares the transduction support vector machine (Transductive Support Vector Machine,TSVM) based on the clustering hypothesis based on the least squares (Least Squares,LS) method. The regularized least square classification (Laplacian Regularized Least Squares Classification,LapRLSC (LLS) method based on manifold hypothesis and the classification performance of the two hypothetical SemiBoost and implicitly constrained least squares (Implicitly Constrained Semi-supervised Least Squares,ICLS without any assumptions are used. The following conclusions are obtained: 1) when the data distribution is known, the better classification performance can be guaranteed by using the corresponding data distribution hypothesis; 2) TSVM can achieve high classification accuracy when there is no prior knowledge of data distribution and the number of samples is limited. 3) when it is difficult to obtain sample category markers and emphasize classification security, ICLS, should be selected and LapRLSC is also one of the better options. Secondly, a semi-supervised manifolds regularization classification learning framework based on adaptive graph (AGMR), for short) is proposed to construct and classify graphs at the same time. In this framework, the process of graph construction and classification learning is unified with each other, thus promoting each other. At the same time, the parameters of Manifold structure graph are adjusted with the learning process and do not need to be given in advance. For graph weight constraints, entropy constraint AGMR (AGMR_entropy) and sparse constraint AGMR (AGMR_sparse) methods are developed by using entropy constraint and sparse constraint, respectively. The experimental results show that the new method can effectively improve the learning performance of the traditional manifold regularization framework.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP181
【相似文献】
相关期刊论文 前10条
1 林克明;薛永生;文娟;;一种基于信息论的归纳分类学习算法[J];厦门大学学报(自然科学版);2009年02期
2 王莉莉;张少白;;一种基于声音分类学习的神经模型研究[J];计算机技术与发展;2011年12期
3 潘巍;马培军;苏小红;;大间隔分类学习研究现状[J];智能计算机与应用;2013年06期
4 丁卫平;王建东;管致锦;施Oz;;基于动态交叉协同的属性量子进化约简与分类学习级联算法[J];模式识别与人工智能;2011年06期
5 倪艾玲;柯栋梁;;基于预算约束下的分类学习[J];安徽工业大学学报(自然科学版);2008年02期
6 崔玉文,冯晓宁;基于案例的学习方法的研究及其应用[J];齐齐哈尔大学学报;2002年03期
7 刘丽珍,宋瀚涛,陆玉昌;基于Naive Bayes的CLIF_NB文本分类学习方法[J];小型微型计算机系统;2005年09期
8 王文剑;梁志;郭虎升;;基于数据关系的SVM多分类学习算法[J];山西大学学报(自然科学版);2012年02期
9 刘柏嵩;贺赛龙;;一种基于Web的分类体系学习算法[J];宁波大学学报(理工版);2008年01期
10 顾鑫;王士同;;大样本多源域与小目标域的跨领域快速分类学习[J];计算机研究与发展;2014年03期
相关会议论文 前1条
1 杨波;秦锋;程泽凯;;一种新的分类学习系统评估度量[A];2005年“数字安徽”博士科技论坛论文集[C];2005年
相关重要报纸文章 前2条
1 记者 崔维利 袁松年;四平“分类学习法”实现全覆盖[N];吉林日报;2013年
2 毛劲 张玲;“分类学习+重点练兵”让队伍更专业[N];检察日报;2010年
相关博士学位论文 前1条
1 王春阳;基于信息熵的自训练半监督高光谱遥感影像分类研究[D];河南理工大学;2015年
相关硕士学位论文 前10条
1 孟岩;基于自适应图的半监督流形正则化分类学习框架研究[D];南京邮电大学;2017年
2 张帆;基于加权的多流形排序的图像检索研究[D];东北师范大学;2017年
3 朱华;具有平行平均曲率向量的紧致伪脐子流形[D];西南大学;2017年
4 欧慧;基于流形距离和蜂群的聚类算法研究[D];长沙理工大学;2016年
5 田君杰;基于流形的GNSS欺骗干扰识别[D];杭州电子科技大学;2017年
6 王守成;流形改正算法在非保守和耗散限制性三体问题中的应用[D];南昌大学;2017年
7 葛亚波;分类学习中分散效应及其认知机制的研究[D];浙江师范大学;2016年
8 张迪;基于跨领域分类学习的产品评论情感分析[D];上海交通大学;2010年
9 奚臣;半监督分类方法研究[D];江南大学;2017年
10 陈瑶;2维流形STL曲面网格的重建算法研究[D];湘潭大学;2017年
,本文编号:2475602
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2475602.html