基于概率假设密度的多传感器多目标跟踪技术研究
[Abstract]:As a research focus in the field of multi-sensor information fusion, multi-target tracking technology has a wide range of applications in military and civil fields. The traditional multi-target tracking method is based on the classical probability theory. The core of the traditional multi-target tracking method is to solve the problem of multi-target data association. The tracking process is easily affected by the complex environment such as unknown number of targets, dense clutters, low detection rate and so on, which leads to the increase of the complexity of the data association problem and the decrease of tracking accuracy. In recent years, probabilistic hypothetical density (Probability Hypothesis Density,PHD) filtering methods based on stochastic finite set (Random Finite Set,RFS) have attracted much attention. By using RFS theory, the target state set and the sensor measurement set can be described in a probability hypothetical density space, which effectively avoids the problem of data association in the traditional tracking algorithm. However, most of the multi-target tracking methods based on random finite sets are proposed for single sensor. In complex environment, it is difficult to rely only on the information obtained by a single sensor for stable and accurate filtering estimation. It is usually necessary to fuse the information of multiple sensors to meet the tracking requirements. In this paper, the problem of multi-sensor multi-target tracking with high hash rate and low detection rate is studied. The main work and research results are as follows: 1) aiming at the degradation of tracking effect of single-sensor application PHD filter in high clutter environment, an adaptive multi-sensor data fusion algorithm based on Gao Si hybrid PHD filter is proposed by constructing the distributed multi-sensor data fusion structure model. The simulation results show that compared with the single sensor, the proposed algorithm effectively improves the tracking accuracy. 2) aiming at the limitations of the conventional track fusion algorithm in different clutter environment and detection rate, the tracking effect is limited. In this paper, a distributed multi-sensor data fusion structure model with feedback is constructed, and two different multi-sensor PHD fusion algorithms, extreme value fusion algorithm and product fusion algorithm, are proposed. The simulation results of different scenarios show that the proposed algorithm is superior to the traditional algorithm. 3) the conventional multi-target tracking is extended to multi-maneuvering target tracking, and the interactive multi-model (Interacting Multiple Model Algorithm,IMM algorithm is introduced to construct a multi-sensor IMM-GMPHD filtering algorithm for multi-maneuvering target tracking, which can effectively deal with the multi-maneuvering target tracking problem in cluttered environment. The simulation results show that the proposed algorithm can obtain higher accuracy of target state estimation when the target maneuvers.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212
【参考文献】
相关期刊论文 前10条
1 苍岩;马莹;乔玉龙;;高斯混合概率假设密度滤波的改进与应用研究[J];系统工程与电子技术;2016年11期
2 秦岭;黄心汉;;自适应目标新生强度的SMC-PHD/CPHD滤波[J];控制与决策;2016年08期
3 申屠晗;薛安克;骆吉安;;多步历史估计信息反馈多模型融合方法[J];控制理论与应用;2015年01期
4 杨峰;王永齐;梁彦;潘泉;;基于概率假设密度滤波方法的多目标跟踪技术综述[J];自动化学报;2013年11期
5 徐洋;徐晖;罗少华;安玮;;基于随机有限集理论的多传感器目标联合检测跟踪算法[J];国防科技大学学报;2013年01期
6 王晓;韩崇昭;连峰;;基于随机有限集的目标跟踪方法研究及最新进展[J];工程数学学报;2012年04期
7 杨威;付耀文;龙建乾;黎湘;;基于有限集统计学理论的目标跟踪技术研究综述[J];电子学报;2012年07期
8 吕学斌;周群彪;陈正茂;熊运余;蔡葵;;高斯混合概率假设密度滤波器在多目标跟踪中的应用[J];计算机学报;2012年02期
9 刘贵喜;周承兴;王泽毅;廖兴海;;用于多个机动目标的混合高斯概率假设密度跟踪器[J];控制理论与应用;2011年08期
10 李伟;何鹏举;高社生;;多传感器加权信息融合算法研究[J];西北工业大学学报;2010年05期
相关会议论文 前1条
1 张英杰;古强;余诚刚;王伟;李秉国;;基于PHD滤波的多传感器多目标跟踪融合算法[A];2015航空试验测试技术学术交流会论文集[C];2015年
相关博士学位论文 前3条
1 申屠晗;面向目标跟踪的信息反馈融合方法研究[D];浙江大学;2014年
2 张鹤冰;概率假设密度滤波算法及其在多目标跟踪中的应用[D];哈尔滨工程大学;2012年
3 徐洋;基于随机有限集理论的多目标跟踪技术研究[D];国防科学技术大学;2012年
相关硕士学位论文 前3条
1 赵慧;多传感器信息融合目标跟踪算法研究[D];华南理工大学;2014年
2 司冠楠;面向多目标跟踪的多传感器数据融合方法研究[D];沈阳理工大学;2014年
3 鲁振伟;基于PHD滤波的多传感器融合方法研究[D];哈尔滨工业大学;2012年
,本文编号:2501212
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2501212.html