当前位置:主页 > 科技论文 > 自动化论文 >

基于概率假设密度的多传感器多目标跟踪技术研究

发布时间:2019-06-17 19:31
【摘要】:多目标跟踪技术作为多传感器信息融合领域的一个研究热点,在军事与民用领域有着广泛的应用。传统多目标跟踪方法以经典概率论为基础,其核心为解决多目标数据关联问题,跟踪过程中易受目标个数未知、杂波密集、检测率低等复杂环境影响,导致数据关联问题复杂度增加和跟踪精度下降。近年来,基于随机有限集(Random Finite Set,RFS)的概率假设密度(Probability Hypothesis Density,PHD)滤波方法颇受关注。该方法利用RFS理论,能够将目标状态集合和传感器测量集合统一描述于一个概率假设密度空间中,有效的避免了传统跟踪算法中的数据关联问题。尽管如此,目前大多数基于随机有限集的多目标跟踪方法还是针对单传感器提出的。在复杂环境下,很难做到仅依靠单个传感器获取的信息进行稳定且准确的滤波估计,通常需要融合多个传感器的信息来达到跟踪要求。为此,本文针对高杂波率和低检测率下的多传感器多目标跟踪问题进行研究,主要工作和研究成果如下:1)针对高杂波环境下,单传感器应用PHD滤波器出现跟踪效果退化的问题,通过构建了分布式多传感器数据融合结构模型,提出了一种基于高斯混合PHD滤波的自适应多传感器数据融合算法。仿真结果表明,与单传感器相比,所提算法有效的提高了跟踪精度。2)针对在不同的杂波环境以及检测率下,常规航迹融合算法具有的局限性,限制了跟踪效果的提高。为此,构建带反馈的分布式多传感器数据融合结构模型,并提出了两种不同的多传感器PHD融合算法:极值融合算法和乘积融合算法。通过不同场景的仿真实验,验证了所提算法性能优于传统算法。3)将常规多目标跟踪拓展到多机动目标跟踪,引入交互多模型(Interacting Multiple Model Algorithm,IMM)算法,构建了一种用于多机动目标跟踪的多传感器IMM-GMPHD滤波算法,使其能够有效处理杂波环境中的多机动目标跟踪问题。仿真实验证明:当目标发生机动时,所提算法能得到更高的目标状态估计精度。
[Abstract]:As a research focus in the field of multi-sensor information fusion, multi-target tracking technology has a wide range of applications in military and civil fields. The traditional multi-target tracking method is based on the classical probability theory. The core of the traditional multi-target tracking method is to solve the problem of multi-target data association. The tracking process is easily affected by the complex environment such as unknown number of targets, dense clutters, low detection rate and so on, which leads to the increase of the complexity of the data association problem and the decrease of tracking accuracy. In recent years, probabilistic hypothetical density (Probability Hypothesis Density,PHD) filtering methods based on stochastic finite set (Random Finite Set,RFS) have attracted much attention. By using RFS theory, the target state set and the sensor measurement set can be described in a probability hypothetical density space, which effectively avoids the problem of data association in the traditional tracking algorithm. However, most of the multi-target tracking methods based on random finite sets are proposed for single sensor. In complex environment, it is difficult to rely only on the information obtained by a single sensor for stable and accurate filtering estimation. It is usually necessary to fuse the information of multiple sensors to meet the tracking requirements. In this paper, the problem of multi-sensor multi-target tracking with high hash rate and low detection rate is studied. The main work and research results are as follows: 1) aiming at the degradation of tracking effect of single-sensor application PHD filter in high clutter environment, an adaptive multi-sensor data fusion algorithm based on Gao Si hybrid PHD filter is proposed by constructing the distributed multi-sensor data fusion structure model. The simulation results show that compared with the single sensor, the proposed algorithm effectively improves the tracking accuracy. 2) aiming at the limitations of the conventional track fusion algorithm in different clutter environment and detection rate, the tracking effect is limited. In this paper, a distributed multi-sensor data fusion structure model with feedback is constructed, and two different multi-sensor PHD fusion algorithms, extreme value fusion algorithm and product fusion algorithm, are proposed. The simulation results of different scenarios show that the proposed algorithm is superior to the traditional algorithm. 3) the conventional multi-target tracking is extended to multi-maneuvering target tracking, and the interactive multi-model (Interacting Multiple Model Algorithm,IMM algorithm is introduced to construct a multi-sensor IMM-GMPHD filtering algorithm for multi-maneuvering target tracking, which can effectively deal with the multi-maneuvering target tracking problem in cluttered environment. The simulation results show that the proposed algorithm can obtain higher accuracy of target state estimation when the target maneuvers.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212

【参考文献】

相关期刊论文 前10条

1 苍岩;马莹;乔玉龙;;高斯混合概率假设密度滤波的改进与应用研究[J];系统工程与电子技术;2016年11期

2 秦岭;黄心汉;;自适应目标新生强度的SMC-PHD/CPHD滤波[J];控制与决策;2016年08期

3 申屠晗;薛安克;骆吉安;;多步历史估计信息反馈多模型融合方法[J];控制理论与应用;2015年01期

4 杨峰;王永齐;梁彦;潘泉;;基于概率假设密度滤波方法的多目标跟踪技术综述[J];自动化学报;2013年11期

5 徐洋;徐晖;罗少华;安玮;;基于随机有限集理论的多传感器目标联合检测跟踪算法[J];国防科技大学学报;2013年01期

6 王晓;韩崇昭;连峰;;基于随机有限集的目标跟踪方法研究及最新进展[J];工程数学学报;2012年04期

7 杨威;付耀文;龙建乾;黎湘;;基于有限集统计学理论的目标跟踪技术研究综述[J];电子学报;2012年07期

8 吕学斌;周群彪;陈正茂;熊运余;蔡葵;;高斯混合概率假设密度滤波器在多目标跟踪中的应用[J];计算机学报;2012年02期

9 刘贵喜;周承兴;王泽毅;廖兴海;;用于多个机动目标的混合高斯概率假设密度跟踪器[J];控制理论与应用;2011年08期

10 李伟;何鹏举;高社生;;多传感器加权信息融合算法研究[J];西北工业大学学报;2010年05期

相关会议论文 前1条

1 张英杰;古强;余诚刚;王伟;李秉国;;基于PHD滤波的多传感器多目标跟踪融合算法[A];2015航空试验测试技术学术交流会论文集[C];2015年

相关博士学位论文 前3条

1 申屠晗;面向目标跟踪的信息反馈融合方法研究[D];浙江大学;2014年

2 张鹤冰;概率假设密度滤波算法及其在多目标跟踪中的应用[D];哈尔滨工程大学;2012年

3 徐洋;基于随机有限集理论的多目标跟踪技术研究[D];国防科学技术大学;2012年

相关硕士学位论文 前3条

1 赵慧;多传感器信息融合目标跟踪算法研究[D];华南理工大学;2014年

2 司冠楠;面向多目标跟踪的多传感器数据融合方法研究[D];沈阳理工大学;2014年

3 鲁振伟;基于PHD滤波的多传感器融合方法研究[D];哈尔滨工业大学;2012年



本文编号:2501212

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2501212.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e232b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com