当前位置:主页 > 科技论文 > 自动化论文 >

具有自适应搜索策略的灰狼优化算法

发布时间:2020-06-27 21:43
【摘要】:灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了具有自适应搜索策略的改进算法。为了提高算法的收敛速度和优化精度,通过适应度值控制智能个体位置,并引入了最优引导搜索方程;另一方面,为提高GWO的种群多样性,改进算法利用位置矢量差随机跳出局部最优。最后对10个标准测试函数进行了仿真实验,并与其他4种算法进行了比较,统计结果和Wilcoxon符号秩检验结果均表明,所提出的改进算法在收敛速度以及搜索精度方面具有明显优势。

【相似文献】

相关期刊论文 前10条

1 唐浩;;蚁群算法的研究与展望[J];牡丹江教育学院学报;2009年06期

2 邓小波;曹聪聪;龙伦海;康耀红;;蚁群算法搜索熵研究[J];海南大学学报(自然科学版);2007年04期

3 张康;顾幸生;;全局组搜索优化算法及其应用研究[J];青岛科技大学学报(自然科学版);2012年05期

4 李东晓;蒋珉;柴干;;蚁群算法优化及其在高速公路紧急救援中的应用[J];计算机技术与发展;2010年11期

5 _5文龙 ,黄

本文编号:2732139


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2732139.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6d2b0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com