基于MRI图像神经网络分析方法的前列腺癌诊断
发布时间:2023-06-23 19:00
前列腺癌是毁灭性的恶性肿瘤,早期很难识别。诊断的“金标准”是MRI和MRI扫描的进一步研究。人工神经网络具有巨大的图像识别任务潜力,可用于自动诊断系统,对医疗人员有很大帮助。在这项工作中,基于健康和不健康前列腺的MRI图像,开发了用于识别前列腺癌的卷积神经网络模型。卷积多层单向神经网络的建议结构包括两个卷积层和两个池化层的交替,然后是三个完全连接的层。作为激活功能,除了输出层之外,所有层都使用了Re LU功能。对于输出层,使用了Soft Max激活功能。损失函数由MSE函数表示。选择SGD函数作为优化函数。收集数据并为训练神经网络作好初步准备。用于训练神经网络的数据集包括5450个样本。在具有不同癌症和健康样本的三个不同数据集上测试了性能,并获得了良好的结果。实验表明,训练集的准确率为90.5%–94.3%,测试集的准确率为89.2–96.9%。测试准确率和损失的曲线表明该模型已被很好地训练。在某些情况下,准确率可能达到97.1%。具有一定的临床应用价值,这种深度学习方法可以广泛应用于前列腺癌及其他癌症任务的分级和分期。该研究将使前列腺癌的诊断过程自动化,提高确定癌性肿瘤的准确性,减轻...
【文章页数】:63 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Statement of the problem
1.2 Research background
1.3 Application of machine learning methods in medicine
1.4 Related works review
1.5 Content organization
Chapter 2 Theories Of Machine Learning
2.1 Deep learning and neural networks
2.2 Overview of popular image recognition methods
2.2.1 Histogram of Oriented Gradient
2.2.2 Recurrent neural network
2.3 Using convolution neural network for image recognition
2.3.1 Convolution
2.3.2 Pooling
2.3.3 Fully connected layers and training process
2.4 Development environment and frameworks
2.5 Chapter Summary
Chapter 3 Research Method And Structure Of CNN
3.1 Architecture
3.2 Optimization
3.2.1 Stochastic Gradient Descent (SGD)
3.2.2 RMSProp
3.2.3 ADAM
3.3 Loss function
3.4 Activation function
3.5 Dataset
3.6 Chapter summary
Chapter 4 Research experiment
4.1 Data preprocessing
4.2 Experiment conditions
4.3 Results and evaluation
Conclusion
结论
References
Acknowledgements
本文编号:3835140
【文章页数】:63 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Introduction
1.1 Statement of the problem
1.2 Research background
1.3 Application of machine learning methods in medicine
1.4 Related works review
1.5 Content organization
Chapter 2 Theories Of Machine Learning
2.1 Deep learning and neural networks
2.2 Overview of popular image recognition methods
2.2.1 Histogram of Oriented Gradient
2.2.2 Recurrent neural network
2.3 Using convolution neural network for image recognition
2.3.1 Convolution
2.3.2 Pooling
2.3.3 Fully connected layers and training process
2.4 Development environment and frameworks
2.5 Chapter Summary
Chapter 3 Research Method And Structure Of CNN
3.1 Architecture
3.2 Optimization
3.2.1 Stochastic Gradient Descent (SGD)
3.2.2 RMSProp
3.2.3 ADAM
3.3 Loss function
3.4 Activation function
3.5 Dataset
3.6 Chapter summary
Chapter 4 Research experiment
4.1 Data preprocessing
4.2 Experiment conditions
4.3 Results and evaluation
Conclusion
结论
References
Acknowledgements
本文编号:3835140
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/3835140.html