一种新的癫痫脑电融合特征提取方法
本文关键词:一种新的癫痫脑电融合特征提取方法
更多相关文章: 癫痫脑电 Hjorth参数 差分 样本熵 超限学习机(ELM)
【摘要】:癫痫是一种常见的大脑神经紊乱疾病,癫痫性发作主要由大脑中反常的神经元的超同步放电引起。为了更好地完成癫痫性发作的自动检测,文中提出了一种新的癫痫脑电融合特征提取方法。一方面,在基于Hjorth参数的振幅移动性与振幅复杂度的基础上,结合Hilbert变化提出了一种新的频率移动性与频率复杂度,然后将他们合成定义为改进的Hjorth参数特征;另一方面,结合二阶差分提出了一种改进的二阶差分样本熵。最后将改进的Hjorth参数特征与二阶差分样本熵一起作为融合特征放入超限学习机(ELM)中进行分类。数值实验结果表明,文中所提出的融合特征与ELM结合的癫痫性发作的自动检测方法与已有方法相比,检测性能有了很大提高,准确率可达到97.42%。
【作者单位】: 西北大学医学大数据研究中心;
【关键词】: 癫痫脑电 Hjorth参数 差分 样本熵 超限学习机(ELM)
【基金】:国家自然科学基金资助项目(61473223) 陕西省自然科学基础研究计划基金资助项目(2014JM1016)
【分类号】:R742.1;TP181
【正文快照】: 癫痫是一种常见的大脑神经紊乱疾病。癫痫性发作主要由大脑中反常的神经元的超同步放电引起,其特点是突发性和反复性,对患者的生理和心理都造成巨大伤害,严重危害人们的正常生活,患者的过早死亡率可能是正常人的2~3倍。因此,关于癫痫的有效诊断和治疗具有十分重要的临床意义和
【相似文献】
中国期刊全文数据库 前10条
1 葛丁飞;李小梅;;心电信号多周期融合特征提取和分类研究[J];中国生物医学工程学报;2006年06期
2 张绍武;潘泉;赵春晖;程咏梅;;基于加权自相关函数特征提取法的多类蛋白质同源寡聚体分类研究[J];生物医学工程学杂志;2007年04期
3 薛建中,郑崇勋,闫相国;快速多变量自回归模型的意识任务的特征提取与分类[J];西安交通大学学报;2003年08期
4 杨晓敏,罗立民;白细胞自动分类中的特征提取和分析[J];北京生物医学工程;1992年04期
5 王双维;樊晓平;廖志芳;;一种激光诱导荧光光谱特征提取新方法[J];计算机工程与应用;2008年12期
6 杜军平,涂序彦;计算机图像处理技术在舌像特征提取中的应用[J];中国医学影像技术;2003年S1期
7 游佳;陈卉;;数字图像中血管的分割与特征提取[J];生物医学工程与临床;2011年01期
8 谢轶峰;;乳腺超声图像肿瘤特征提取与肿瘤分类[J];中外医疗;2013年16期
9 吴泽晖,吴星;医学图象的边缘特征提取[J];海南师范学院学报(自然科学版);2003年03期
10 杨晓敏,,罗立民,韦钰;血液白细胞计算机分类中的特征提取研究[J];应用科学学报;1994年02期
中国重要会议论文全文数据库 前10条
1 尚修刚;蒋慰孙;;模糊特征提取新算法[A];1997中国控制与决策学术年会论文集[C];1997年
2 潘荣江;孟祥旭;杨承磊;王锐;;旋转体的几何特征提取方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年
3 薛燕;李建良;朱学芳;;人脸识别中特征提取的一种改进方法[A];第十三届全国图象图形学学术会议论文集[C];2006年
4 杜栓平;曹正良;;时间—频率域特征提取及其应用[A];2005年全国水声学学术会议论文集[C];2005年
5 黄先锋;韩传久;陈旭;周剑军;;运动目标的分割与特征提取[A];全国第二届信号处理与应用学术会议专刊[C];2008年
6 魏明果;;方言比较的特征提取与矩阵分析[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
7 林土胜;赖声礼;;视网膜血管特征提取的拆支跟踪法[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 秦建玲;李军;;基于核的主成分分析的特征提取方法与样本筛选[A];2005年中国机械工程学会年会论文集[C];2005年
9 刘红;陈光
本文编号:662054
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/662054.html