当前位置:主页 > 科技论文 > 自动化论文 >

改进粒子群算法优化的支持向量机及其应用

发布时间:2017-09-04 15:49

  本文关键词:改进粒子群算法优化的支持向量机及其应用


  更多相关文章: 粒子群优化算法 混沌序列 支持向量机 遥感影像


【摘要】:传统粒子群优化(particle swarm optimization,PSO)算法主要包含两方面问题,即易陷入局部极小和后期震荡严重,为此引入混沌序列来初始化粒子群的位置,并在简化的粒子群数学模型上从两个方面对其进行了改进。本文利用改进的PSO算法对支持向量机(support vector machine,SVM)的参数进行优化,仿真实验结果表明:与SVM、PSO-SVM以及遗传算法(genetic algorithm,GA)优化的SVM(GA-SVM)相比,改进PSO优化的SVM(IPSOSVM)算法具有较高的分类准确率,并且与PSO-SVM算法相比,准确率提高了3%~5%,与PSO-SVM算法以及GASVM算法相比,IPSO-SVM的训练和泛化速度都明显提高。本文将IPSO-SVM算法应用到遥感影像的分类中,分类结果表明,与PSO-SVM算法相比,IPSO-SVM算法具有更好的分类结果。
【作者单位】: 中国矿业大学机电与信息工程学院;
【关键词】粒子群优化算法 混沌序列 支持向量机 遥感影像
【基金】:国家自然科学基金项目(61302157) 国家高技术研究发展计划重大专项(2012AA12A308) 核设施退役及放射性废物治理科研项目(FZ1402-08) 北京市高等学校青年英才计划(YETP0939) 中央高校基本科研业务费项目(2009QJ-11)
【分类号】:TP18
【正文快照】: 网络出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20160928.0936.036.html支持向量机(support vector machine,SVM)是应用最广泛的分类算法之一,该方法的核心思想是在特征空间寻找最优超平面将两类样本无误地分开,且分类间隔最大。该方法能够平衡模型的复杂性和学习

【相似文献】

中国期刊全文数据库 前10条

1 吴娟;范玉妹;王丽;;关于改进的支持向量机的研究[J];攀枝花学院学报;2006年05期

2 刘硕明;刘佳;杨海滨;;一种新的多类支持向量机算法[J];计算机应用;2008年S2期

3 尹传环;牟少敏;田盛丰;黄厚宽;;单类支持向量机的研究进展[J];计算机工程与应用;2012年12期

4 王云英;阎满富;;C-支持向量机及其改进[J];唐山师范学院学报;2012年05期

5 李逢焕;;试述不确定支持向量机应用分析及改进思路[J];中国证券期货;2012年12期

6 邵惠鹤;支持向量机理论及其应用[J];自动化博览;2003年S1期

7 曾嵘,蒋新华,刘建成;基于支持向量机的异常值检测的两种方法[J];信息技术;2004年05期

8 张凡,贺苏宁;模糊判决支持向量机在自动语种辨识中的研究[J];计算机工程与应用;2004年21期

9 魏玲,张文修;基于支持向量机集成的分类[J];计算机工程;2004年13期

10 沈翠华,邓乃扬,肖瑞彦;基于支持向量机的个人信用评估[J];计算机工程与应用;2004年23期

中国重要会议论文全文数据库 前10条

1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年

2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年

3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年

4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年

5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年

6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年

7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年

8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年

9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年

10 侯澍e,

本文编号:792458


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/792458.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0fc3d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com