当前位置:主页 > 医学论文 > 临床医学论文 >

CT纹理分析在鉴别乏脂肪肾错构瘤与肾透明细胞癌中的价值

发布时间:2018-04-01 17:14

  本文选题:肾错构瘤 切入点:肾透明细胞癌 出处:《临床放射学杂志》2017年07期


【摘要】:目的探讨CT纹理分析对鉴别乏脂肪肾错构瘤与肾透明细胞癌的价值。方法回顾性分析经手术病理证实的16例乏脂肪肾错构瘤与79例肾透明细胞癌的CT增强图像;通过纹理分析的方法测得其平均值、标准差、熵、不均匀度、峰值、偏度等定量参数,并进行统计学分析。结果两位观察者测得的CT纹理分析定量参数的一致性分析结果如下:平均值、标准差、熵、不均匀度、峰值及偏度的Cronbachα系数分别为:0.97、0.93、0.97、0.94、0.56、0.68。纹理分析定量参数中差、熵、不均匀度三个参数两组间比较结果具有显著差异:标准差(t=3.60,P0.01),熵(t=4.80,P0.01),不均匀度(t=3.86,P0.01);利用标准差鉴别两组肿瘤的曲线下面积、阈值、敏感性、特异性、准确性分别为:0.78、45.46、70.9%、81.2%、72.6%;利用熵鉴别两组肿瘤的曲线下面积、阈值、敏感性、特异性、准确性分别为:0.82、4.50、84.8%、68.8%、82.1%;利用不均匀度鉴别两组肿瘤的曲线下面积、阈值、敏感性、特异性、准确性分别为:0.80、0.09、70.9%、81.2%、72.6%。利用多参数联合鉴别肾乏脂肪错构瘤与肾透明细胞癌的效能:标准差+熵鉴别两组肿瘤的曲线下面积、敏感性、特异性、准确性分别为:0.83%、75.0%、81.0%、80.0%;标准差+不均匀度鉴别两组肿瘤的曲线下面积、敏感性、特异性、准确性分别为:0.81%、81.2%、70.1%、71.6%;熵+不均匀度鉴别两组肿瘤的曲线下面积、敏感性、特异性、准确性分别为:0.83、81.2%、70.1%、72.6%;标准差+熵+不均匀度鉴别两组肿瘤的曲线下面积、敏感性、特异性、准确性分别为:0.84、87.5%、69.6%、72.6%。结论 CT纹理分析的部分定量参数(标准差、熵、不均匀度)可用于鉴别乏脂肪错构瘤与肾细胞癌。
[Abstract]:Objective to evaluate the value of CT texture analysis in differentiating adipogenic renal hamartoma from renal clear cell carcinoma. Methods CT enhanced images of 16 cases of adipose renal hamartoma and 79 cases of renal clear cell carcinoma proved by surgery and pathology were retrospectively analyzed. The quantitative parameters such as average value, standard deviation, entropy, non-uniformity, peak value, deviation and so on are measured by means of texture analysis. Results the consistency of the quantitative parameters of CT texture analysis measured by two observers was as follows: mean value, standard deviation, entropy, non-uniformity, The Cronbach 伪 coefficients of peak value and skewness are 0. 97 / 0. 93 / 0. 97 / 0. 94 / 0. 566 / 0. 68 respectively. There are significant differences between the three groups in the quantitative parameters of texture analysis: standard deviation is 3. 60% P0.01g, entropy is 4. 80 P0. 01, heterogeneity is 3. 86% P0. 01, and the area under the curve of the two groups is identified by using standard deviation. The threshold value, sensitivity, specificity, accuracy were 72.6. the area under the curve, threshold, sensitivity, specificity and accuracy of the two groups were identified by entropy, respectively. The area under the curve, the threshold, the sensitivity, the specificity and the accuracy of the tumor in the two groups were respectively 82.1.The area under the curve, the threshold, the sensitivity, the specificity, and the accuracy of the two groups were respectively 82.1.The area under the curve, the threshold, the sensitivity, the specificity, and the accuracy of the two groups were identified by non-uniformity. The sensitivity, specificity and accuracy of the two groups were respectively 81.20.The effectiveness of multiple parameters in differentiating renal adipose hamartoma from renal clear cell carcinoma: the area under the curve, sensitivity and specificity of the two groups of tumors were identified by standard deviation entropy. The accuracy of the two groups of tumors was 75.0 and 81.0, respectively; the area under the curve, sensitivity, specificity, and accuracy of the standard deviation non-uniformity were 70.1 and 71.6, respectively; the area under the curve, sensitivity, specificity, and specificity of the two groups of tumors were identified by entropy non-uniformity, and the area under the curve, sensitivity, specificity, and specificity of the two groups of tumors were identified. The accuracy was 70.1% and 72.6% respectively; the standard deviation entropy unevenness was used to identify the area, sensitivity, specificity and accuracy of the two groups of tumors under the curve, respectively. The sensitivity, specificity and accuracy of the two groups were 69.66.Conclusion some quantitative parameters of CT texture analysis (standard deviation, entropy, entropy), Heterogeneity) can be used to differentiate adipose hamartoma from renal cell carcinoma.
【作者单位】: 徐州医学院附属医院放射科;
【分类号】:R730.44;R737.11

【相似文献】

相关期刊论文 前10条

1 刘f ,程敬之;分形模型的超声图像纹理分析[J];生物医学工程学杂志;1999年03期

2 吴天秀;蔡洁;;基于纹理分析的骨质疏松计量诊断[J];中国骨质疏松杂志;2014年07期

3 张镜清,孙军;采用纹理分析特征用于肝脏超声图像的病患的辨识[J];中国医学影像技术;1993年03期

4 刘伟;李月卿;;医学图像纹理分析综述[J];泰山医学院学报;2006年01期

5 杜X,童勤业,许俊;基于小波包分解和HMM模型的纹理分析[J];医疗设备信息;2003年08期

6 李振立;杨晓梅;;基于纹理分析的带标记线心脏MR图像分割[J];中国组织工程研究与临床康复;2011年09期

7 王李冬;邰晓英;巴特尔;;基于小波变换纹理分析的医学图像检索[J];中国医疗器械杂志;2006年02期

8 黄亚丽,李芬华,赵真;B超肝脏图像纹理特征提取方法的实验研究[J];中国医学影像技术;2004年12期

9 罗立民,鲍旭东,,田雪芹;基于纹理分析的磁共振图象区域分割[J];自动化学报;1995年04期

10 ;[J];;年期

相关会议论文 前8条

1 徐国栋;郭恒业;;统计纹理生成模型[A];中国科学技术协会首届青年学术年会论文集(工科分册·上册)[C];1992年

2 卢海燕;陈明;孙梅;宋树良;马艳;郑传立;;肝纤维化超声图像纹理分析与组织学检查对照研究[A];第二届长三角超声医学论坛暨2009年浙江省超声医学学术年会论文汇编[C];2009年

3 杨关;冯国灿;邹小林;刘志勇;;彩色纹理分析中的高斯图模型[A];第十五届全国图象图形学学术会议论文集[C];2010年

4 熊欣;何中市;;纹理分析在超声图像中的应用[A];2008年计算机应用技术交流会论文集[C];2008年

5 姚明海;应宏微;;基于反馈的汽车牌照纹理分析定位算法的研究[A];第二十三届中国控制会议论文集(下册)[C];2004年

6 黄战华;刘正;张振;蔡怀宇;杨基春;张尹馨;;基于矢量化方法的纹理缺陷快速检测[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅰ)[C];2008年

7 管玉娟;王淑晴;关泽群;;纹理分析的条件模式谱方法[A];第十四届全国遥感技术学术交流会论文摘要集[C];2003年

8 刘佳;李哲英;王淑英;;路标识别算法研究[A];2008通信理论与技术新发展——第十三届全国青年通信学术会议论文集(下)[C];2008年

相关博士学位论文 前3条

1 高妮;基于Contourlet提取纹理建立早期AD的高斯过程预测模型[D];首都医科大学;2016年

2 毛羽;血清miR-1290联合DW-MRI纹理分析预测食管鳞癌放化疗敏感性及相关机制的研究[D];天津医科大学;2016年

3 张国鹏;三维纹理分析在虚拟结肠镜计算机辅助检测/诊断中的应用研究[D];第四军医大学;2013年

相关硕士学位论文 前10条

1 陈金霞;快速粒度估计法在纹理分析中的应用研究[D];华南理工大学;2015年

2 刘W

本文编号:1696530


资料下载
论文发表

本文链接:https://www.wllwen.com/linchuangyixuelunwen/1696530.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户45bf9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com