基于深度学习的脉搏波连续血压测量
[Abstract]:In today's society, the number of patients with cardiovascular disease is high due to the heavy work pressure and irregular living and rest. If the cardiovascular parameters can be studied and the relationship between them can be analyzed, the monitoring of cardiovascular disease can be realized, and the incidence of cardiovascular disease can be prevented and reduced. Blood pressure is an important physiological parameter, which can reflect the cardiovascular function of human body. Pulse wave signal contains a lot of physiological and pathological information of human body. It is simple to measure blood pressure by pulse wave characteristic parameters, low cost, high accuracy, and can be continuously measured, so it has a broad development prospect. Based on the theory of blood pressure measurement, two continuous blood pressure measurement models are established in this paper. One is to construct blood pressure model by regression analysis according to the traditional method; the other is to build BP model of neural network with the help of BP neural network to train the relationship between blood pressure and characteristic parameters in the framework of in-depth learning TensorFlow. The experimental results show that the blood pressure error calculated by the two models is within the 3mmHg standard value, while the second model error is within the 2mmHg. Conforms to the international standard value. The main work of this paper is as follows: firstly, the pulse wave signal is collected by using the photoelectric heart rate meter (fingertip type), the signal filtering is completed by wavelet transform and 5.3 times, and the feature points are extracted. A hybrid algorithm is proposed to identify feature points, that is, threshold difference method, wavelet transform method and differential method. The results show that the algorithm can extract feature points accurately. Secondly, a blood pressure measurement model based on linear regression is established, that is, by extracting the time domain characteristic parameters of pulse wave and analyzing the correlation between blood pressure and characteristic parameters, the blood pressure model is obtained by stepwise regression analysis, and the blood pressure value is estimated. Compared with the standard blood pressure, the error is within 3mm Hg. At last, a BP neural network model of blood pressure is established based on the framework of deep learning TensorFlow, that is, the characteristic parameters of pulse wave are used as input of BP neural network, and the blood pressure model is obtained by training data. Through dropout in TensorFlow, the neural network is reduced and a certain number of characteristic parameters are removed, which can eliminate the over-fitting phenomenon and reduce the error, thus the optimal model can be established. In order to express the blood pressure model clearly, the final BP neural network model is presented by using the visualization tool TensorBoard. By estimating blood pressure, compared with standard blood pressure, the error is within 2mm Hg, which is more accurate than traditional method.
【学位授予单位】:曲阜师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R443.5;TP181
【参考文献】
相关期刊论文 前10条
1 魏安海;尹军;苌飞霸;李姝颖;周德强;颜乐先;;无创连续血压测量技术的研究进展[J];中国医疗设备;2015年11期
2 刘彦伟;朱健铭;梁永波;陈真诚;;经验模态分解和小波变换的连续血压测量[J];计算机仿真;2015年11期
3 郑英;陆清茹;左梅;王迷迷;黄卉;;基于ZigBee技术的病房病人心率监测系统设计[J];电子制作;2015年17期
4 张宇博;舒红平;岳希;;指端脉搏曲线特征参数提取方法研究[J];软件导刊;2015年04期
5 刘沛;庞宇;吴宝明;王普领;马勋;;脉搏波形态特征与血压相关性的研究[J];生命科学仪器;2015年01期
6 孙薇;唐宁;江贵平;;脉搏波信号特征点识别与预处理方法研究[J];生物医学工程学杂志;2015年01期
7 王赛;陆小左;;浅谈中医脉诊认识方式的历史沿革[J];河南中医;2015年01期
8 杨建;;脉搏波信号采集与分析方法的研究[J];电脑与信息技术;2014年03期
9 李章俊;王成;朱浩;金凡;马俊领;;基于光电容积脉搏波描记法的无创连续血压测量[J];中国生物医学工程学报;2012年04期
10 于潇;林君;李肃义;;无创血压测量技术的发展概况[J];广东医学;2012年15期
相关硕士学位论文 前10条
1 付南;无袖带连续血压关联因素分析及其非线性建模[D];南昌大学;2016年
2 张笑东;无创血压连续检测技术研究[D];中国科学院研究生院(沈阳计算技术研究所);2016年
3 董锋;基于脉搏波特征的连续血压测量方法研究[D];云南大学;2015年
4 周兴忠;多信息同步采集系统构建与血压测量方法研究[D];兰州理工大学;2014年
5 沈蓉;血压模拟平台的构建与连续血压测量方法的研究[D];兰州理工大学;2014年
6 颜国栋;基于脉搏波的无创血压测量方法研究[D];天津理工大学;2013年
7 唐弘玲;基于信号处理的Android手机心率监测软件设计与实现[D];东华大学;2013年
8 刘效林;基于脉搏波的无创连续血压检测的研究[D];北京交通大学;2012年
9 邹冬;点云模型的尖锐特征提取与分片分析[D];南京师范大学;2012年
10 王继寸;基于脉搏波的无创连续血压测量方法研究[D];天津大学;2009年
,本文编号:2224343
本文链接:https://www.wllwen.com/linchuangyixuelunwen/2224343.html