去甲基化酶TET1参与术后切口痛的表观遗传调控机制
[Abstract]:Background Chronic post-surgical pain syndrome (CPSP) is a common clinical problem and its mechanism is unclear. Surveys show that about 10-50% of patients suffer from postoperative knife-edge pain, and up to 10% of them recover from the primary disease after surgery, but still suffer from persistent chronic pain that is difficult to cure. CPSP has become a challenging research topic and hotspot in the medical field because of its unclear pathogenesis and untargeted clinical treatment. In the relevant clinical reports, it is often shown that patients in elective surgery often have anxiety, tension and noisy environment. Insufficient sleep leads to CPSP. These factors may affect the endocrine disorder of the central nervous system and the changes of the internal and external environment of the nervous system. However, the specific molecular mechanism is unclear, especially the epigenetic mechanism of the central and peripheral neurogenesis. In the animal model of stomachache, the expression of TET1 protein in the dorsal root ganglion and spinal cord of rats with chronic postoperative pain induced by perioperative stress was found to be down-regulated for the first time. This project will elucidate the behavioral characteristics of postoperative pain prolongation caused by mild and severe perioperative sleep deprivation, reveal the molecular basis of increased excitatory activity of pain-related neurons induced by mild perioperative sleep deprivation, and explore the role of epigenetic regulation mechanism induced by mild perioperative sleep deprivation in postoperative pain prolongation. Methods (1) Animal models were made and successfully divided into 4 groups (n < 5 / group) N group (sham); IN group: rat model of foot incision pain in left hind paw (left foot incision 1 cm and blunt tendon separation); S group: rats were wrapped and bound with soft wire mesh. The rats in the IN+S group were treated with left plantar incision and perioperative physical and psychological stress for 6 hours, and the models were established by detecting the changes of mechanical pain, hot pain, cold pain and recovery time, Western-blot and immunofluorescence. (2) Changes of methylase and demethylase in ganglia and spinal cord of chronic pain model after operation were screened; CDS with down-regulation of Si-TET1 and synthesis of TET1 carried by herpes simplex virus was designed to up-regulate TET1, and to observe the effect of TET1 on pain. The expression of three methylase DNMT1, DNMT3a, DNMT3b and three demethylase TET1, TET2 and TET3 were detected by Western-blot and q-PCR, respectively; the expression of si-TET1 was microinjected into DRG and Spinal cord to observe whether TET1 decreased, and the changes of downstream related proteins after TET1 decreased, and the behavioral changes of rats were observed by HSV-TET1. To investigate whether TET1 is an important and necessary factor involved in the chronic change of incision pain. (3) To detect the regulation of glucocorticoid on TET1, to detect the content of serum glucocorticoid in stress rats; to cultivate primary DRG neurons. The effects of corticosterone or glucocorticoid receptor antagonist Ru486 on TET1 expression in DRG neurons, the effects of intraperitoneal injection of glucocorticoid on postoperative incisional pain, and whether the incisional pain caused by corticosterone was reversed by GR receptor antagonist Ru486 were observed. The binding of glucocorticoid receptor GR to the promoter region of TET1 was detected by luciferase assay, and the regulatory effect of GR on the promoter region of TET1 was investigated. (4) To explore the mechanism of TET1 regulating downstream protein, Western-blot, qPCR was used to detect the expression of MOR, KOR and Kv1.2 in IN + S group compared with other groups. 1 and HSV-TET1 up-regulated TET1 to observe the effect on pain-related genes; 7 pairs of primers were designed to detect the binding between TET1 and MOR promoter by bioinformatics software, and the binding degree of TET1 to MOR promoter was detected by CHIP method; the expression and distribution of TET1 in spinal cord and ganglion were detected by immunofluorescence, and the expression and distribution of TET1 and MOR, TET1 and KO were detected by TEIP method. Results 1. Animal models were successfully made. Compared with IN group, in + S group, the thresholds of mechanical pain, hot pain and cold pain were lower; in IN group, mechanical pain, hot pain and cold pain were lower. On the 9th day after operation, the expression of microglial marker OX42 and astrocyte GFAP were increased in the operation side by immunofluorescence assay. The expression of P ERK1, P ERK2 and GFAP in the spinal cord of IN+S group was higher than that of IN group on the 9th day after operation by Western blot. The expression of methylase DNMT1, DNMT3a and DNMT3b in the spinal cord and DRG of the four groups was not changed. The expression of demethylase TET1 decreased in the operation side of IN+S group, but the expression of TET2 and TET3 remained unchanged. The expression of TET1 decreased in the operation side of DRG and S Pinal cord after microinjection of SITET1 respectively. At the same time, the mechanical pain threshold, hot pain threshold and cold pain threshold of the operation side were decreased; HSV-TET1 was used to inject DRG and S Pinal cord of the operation side of IN+S group, respectively, to observe and find that it can reverse the increased pain and shorten the postoperative pain duration of IN+S group. 3.4 groups of rats immediately after stress, orbital blood was taken to detect the content of serum glucocorticoid hormones in stress rats, the results were obvious. Compared with non-stress group, the levels of serum glucocorticoids in S group and IN+S group increased as much as 1000 times, the preference of S group and IN+S group decreased, the stress state of forced swimming prolonged, the expression of TET1 decreased after primary cultured DRG neurons were given glucocorticoid CORT, and the expression of TET1 increased after intraperitoneal injection of glucocorticoid receptor blocker Ru486. Glucocorticoid prolonged postoperative incision pain after three consecutive days and shortened the pain time after intrathecal administration of Ru486. Four pairs of primers were designed for the promoter region of TET1. GR antibody pulldown chromatin immunoprecipitation (CHIP) results showed that GR binds directly to the promoter region of TET1, and luciferase reporter gene (luciferase) showed glucocorticoid receptor. The expression of TET1 was negatively regulated by somatic GR. Western-blot and qPCR results showed that the expression of MOR and KOR decreased but the expression of Kv1.2 remained unchanged. Conditional site preference test showed that the function of MOR and KOR decreased in IN+S group. After injection of Si-TET1, the expression of MOR and KOR decreased; after transfection of HSV-TET1 into primary cultured DRG cells, the expression of MOR and KOR was up-regulated by Western-blot, qPCR, and the expression of MOR and KOR was reversed by microinjection of IN+S or HSV-TET1. Chromosomal immunoprecipitation (CHIP) showed that TET1 binds directly to the promoter region of MOR. CHIP and double luciferase reporter genes showed that TET1 regulates the expression of MOR. DNA-blot showed that the total methylation level remained unchanged, but high-throughput sequencing showed that the methylation of MOR promoter region in IN+S group was increased compared with that in IN group. Activation of glucocorticoid receptors inhibits the expression of TET1. TET1 results in persistent postoperative incisional pain by affecting the balance of KOR, 5 MC and 5 MHC in the promoter regions of MOR. Therefore, TET1 is an important and necessary molecule involved in the occurrence and development of chronic postoperative pain. It provides a theoretical basis for opening up new ideas for the treatment of CPSP, and may be a potential target for prevention and treatment of CPSP.
【学位授予单位】:郑州大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R402
【相似文献】
相关期刊论文 前10条
1 汪宏良;邹义春;柯俊;鲍群丽;罗卓跃;;多药耐药铜绿假单胞菌16S rRNA甲基化酶、氨基糖苷类修饰酶基因研究[J];中华医院感染学杂志;2008年11期
2 孙振荣;;体外N-甲基-N′-硝基-N-亚硝基胍对DNA甲基化酶的抑制作用[J];国外医学(分子生物学分册);1980年06期
3 何忠效,,危巍,白坚石,吴志奎;抗衰老药物对大鼠肝DNA甲基化酶活力的影响[J];中国中西医结合杂志;1994年06期
4 白坚石,何忠效;哺乳动物DNA甲基化酶[J];生理科学进展;1997年01期
5 周颖杰;王明贵;;质粒介导氨基糖苷类抗生素新耐药机制:16S rRNA甲基化酶[J];中国感染与化疗杂志;2010年02期
6 吴琳;张治国;张健;刘新平;李福洋;;靶向性甲基化酶真核表达载体pcDNA3.1-myc-3a的构建[J];现代生物医学进展;2010年03期
7 白坚石,何忠效,顾郁;鼠肝DNA甲基化酶的纯化及物理化学性质的研究[J];生物化学杂志;1996年06期
8 薛继艳,何忠效;BamHI DNA甲基化酶的提纯及物理化学性质[J];生物化学杂志;1990年06期
9 李龙飞;郑世营;;甲基化与肺癌关系的研究[J];医学综述;2008年11期
10 林宁;孙海平;糜祖煌;;多重耐药大肠埃希菌16SrRNA甲基化酶、氨基糖苷类修饰酶基因研究[J];中国抗生素杂志;2008年09期
相关会议论文 前10条
1 姚军;李威;秦智伟;王晓武;武剑;;植物DNA甲基化及检测方法[A];中国园艺学会十字花科蔬菜分会第六届学术研讨会暨新品种展示会论文集[C];2008年
2 汪宏良;邹义春;柯俊;鲍群丽;罗卓跃;;多药耐药铜绿假单胞菌16S rRNA甲基化酶、氨基糖苷类修饰酶基因研究[A];湖北省暨武汉市微生物学会分析微生物专业委员会第十届第五次学术会议论文汇编[C];2008年
3 连佳;黄圆圆;崔秀宏;高飞;安晓荣;侯健;;组蛋白去甲基化酶在小鼠卵巢组织中的表达[A];全国动物生理生化第十一次学术交流会论文摘要汇编[C];2010年
4 郑一超;徐瑞敏;吕文蕾;黄荟杰;李金凤;刘宏民;;组蛋白赖氨酸特异性去甲基化酶1的生物学意义及原核表达[A];2011年中国药学大会暨第11届中国药师周论文集[C];2011年
5 韩志富;刘培源;程伟;谷立川;李宏;陈涉;柴继杰;;组蛋白去甲基化酶JHDM1的晶体结构研究[A];中国晶体学会第四届全国会员代表大会暨学术会议学术论文摘要集[C];2008年
6 孔祥谦;欧阳斯盛;梁中洁;叶飞;陈丽敏;罗成;蒋华良;;赖氨酸特异性去甲基化酶1催化反应机制的理论研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
7 陈琳;陈杖榴;刘健华;;16S rRNA甲基化酶介导的对氨基糖苷类高水平耐药性的初步研究[A];中国畜牧兽医学会兽医药理毒理学分会第九次学术讨论会论文与摘要集[C];2006年
8 陈飞;方瑞;杨慧蓉;董争红;房健;朱婷婷;巩微;石雨江;徐彦辉;;LSD2/KDM1b的结构研究和功能研究——LSD2/KDM1b识别底物与酶活调节的新机制[A];中国晶体学会第五届全国会员代表大会暨学术大会(大分子分会场)论文摘要集[C];2012年
9 邓大君;;CpG甲基化与癌变原理研究[A];第三届中国肿瘤学术大会教育论文集[C];2004年
10 杨财广;;核酸去甲基化酶FTO的小分子抑制剂[A];中国化学会第29届学术年会摘要集——第22分会:化学生物学[C];2014年
相关重要报纸文章 前5条
1 湘雅医院胸外科主治医师 王曙红;胸部术后切口痛 半坐半卧要活动[N];大众卫生报;2001年
2 本报记者 罗辉 ;心口痛是心脏病引起的吗?[N];健康时报;2003年
3 张国芳;蓝斐:创新是信心和习惯[N];科技日报;2013年
4 杨春;心口痛 疾病报警信号[N];中国消费者报;2003年
5 湖南省安乡县人民医院副主任医师 张天华;心口痛:疾病的报警信号[N];大众卫生报;2005年
相关博士学位论文 前10条
1 曹靖;去甲基化酶TET1参与术后切口痛的表观遗传调控机制[D];郑州大学;2017年
2 吴添文;五指山近交系小型猪骨髓和脐带间充质干细胞的全基因组甲基化和转录组联合分析[D];中国农业科学院;2014年
3 赵黎;组蛋白去甲基化酶JMJD3在SAHF形成中的作用及机制研究[D];东北师范大学;2015年
4 曾铁波;小鼠Dlk1-Dio3印记区域内一个新的差异甲基化区的表观遗传学分析[D];哈尔滨工业大学;2015年
5 梅新宇;CHFR,CDKN2A甲基化在食管鳞癌中的表达及其在放射抵抗中的作用研究[D];山东大学;2015年
6 贾园荟;组蛋白去甲基化酶PHF8参与神经分化的研究与UHRF1、UHRF2调控起始性DNA甲基化的功能研究[D];华东师范大学;2013年
7 陈莹;基于近红外荧光的甲基化及其基因表达检测新技术的研究[D];东南大学;2015年
8 齐善康;组蛋白去甲基化酶LSD2的结构功能研究与UHRF1在基因组印迹中的作用研究[D];华东师范大学;2013年
9 任立坤;小鼠早期胚胎线粒体DNA重头甲基化的研究[D];中国农业大学;2016年
10 徐记迪;柑橘全基因组DNA甲基化分析及调控作用研究[D];华中农业大学;2015年
相关硕士学位论文 前10条
1 苏畅;基于白桦全基因组重亚硫酸盐测序(bisulfite-sequencing)的甲基化图谱分析[D];东北林业大学;2015年
2 张峄桥;高原适应表观遗传学甲基化研究技术MS-RDA的优化与应用[D];中国人民解放军军事医学科学院;2015年
3 张宝东;重离子辐射小鼠旁器官LINE1和B1甲基化遗传分析[D];大连海事大学;2015年
4 彭涛;胃癌组织的DNA甲基化和基因表达研究[D];河北北方学院;2015年
5 刘荣华;蛋白质精氨酸甲基转移酶PRMT5甲基化生物学功能研究[D];南京大学;2013年
6 李彦伟;组蛋白去甲基化酶JMJD3表达与胶质瘤相关性的研究[D];第四军医大学;2014年
7 祝海军;RRBS数据分析新流程的建立及其在肿瘤细胞中等位基因特异甲基化分析的应用[D];华东师范大学;2016年
8 沈笑;高通量分析人食管鳞癌甲基化差异基因的相关研究[D];北京协和医学院;2016年
9 李淑芬;DNA甲基化定量方法的建立及用于精神病样本的分析[D];南方医科大学;2015年
10 邹发林;LncRNA介导人基因组DNA甲基化研究[D];南昌大学;2016年
本文编号:2233566
本文链接:https://www.wllwen.com/linchuangyixuelunwen/2233566.html