基于脉象分类的血压自适应连续测量
[Abstract]:Blood pressure is an important index to measure human health, especially continuous blood pressure. It can indirectly reflect the operation of heart and blood vessels. It is an important basis for clinical diagnosis, observation of therapeutic effect and judgment of disease prevention. However, the existing continuous blood pressure measurement devices on the market, mainly wearable electronic sphygmomanometers, have the disadvantage of poor accuracy and cannot accurately judge whether the human body is in danger or not. Therefore, continuous and accurate measurement of blood pressure and effective judgment of abnormal condition play a good role in the prevention of cardiovascular complications and antihypertensive medication in long-term hypertensive patients. Therefore, to solve the above problems, this paper proposes a new method for continuous blood pressure measurement, which is adaptive continuous blood pressure measurement based on pulse classification. In this method, a new type of sensor, RF radio frequency radar, is used to obtain the dual signals of human radial pulse wave, and then the hierarchical setting association mechanism model is introduced to realize the guided automatic classification of pulse images. Finally, a hierarchical adaptive blood pressure prediction model is used to realize the real-time blood pressure measurement. The main contents of this paper are as follows: (1) deeply understand the working principle and advantages of RF- RF radar, design a pulse wave acquisition system of human radial artery, and set up a real-time data display and data storage system using Labview. The validity of the system is verified by comparing it with the gold standard of pulse wave acquisition system. (2) the accurate classification of pulse image is the basis of blood pressure prediction in the later stage, and the accuracy of blood pressure prediction can only be guaranteed by accurate classification. Based on the human fixed thinking mechanism, we propose a pulse classification model based on hierarchical stereotype association mechanism. Firstly, the coarse classification of pulse images is realized by friendly factor analysis and the guiding direction is determined. Then, the effective classification of pulse images is realized by using the fixed associative neural network. The neural interactive association network combines the guided mutation and pulse evolution rules, and has a strong ability of setting association, which can effectively realize the autoassociation between the measured pulse and the typical pulse. (3) in the stage of blood pressure prediction, We introduce a hierarchical adaptive blood pressure prediction model. Firstly, the internal relation between pulse and blood pressure linear model is established, and the first order blood pressure model is dynamically adjusted according to the pulse and related information. Then, a trained PSO-BP neural network with parameter library is used to adjust the final results of secondary blood pressure. The experimental results show that the classification model based on hierarchical fixed pattern association mechanism can achieve higher classification accuracy for common human pulse images, and the accuracy is 92.86, which is better than other methods. At the same time, the prediction accuracy of the adaptive blood pressure prediction model is 94.65, which can accurately judge the abnormal blood pressure data, and achieve a better follow-up to the continuous tracking trend of individual blood pressure.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R443.5
【参考文献】
相关期刊论文 前10条
1 郭友达;雷恒波;徐雅洁;邢晓曼;康明才;孙明山;;基于动脉张力法和STM32L的24h动态血压计设计[J];单片机与嵌入式系统应用;2016年09期
2 张洋;李毅彬;陈晓萌;邓宁;;基于多种传感器的无创连续血压测量研究[J];电子技术应用;2016年05期
3 梅艳;倪淑明;李治国;;原发性高血压患者心血管危险因素对动脉弹性的影响[J];中国现代医学杂志;2016年02期
4 洋洋;陈小惠;王保强;姜吉荣;;脉搏信号中有效信号识别与特征提取方法研究[J];电子测量与仪器学报;2016年01期
5 虞秋叶;;社区老年高血压患者用药管理的护理干预方法[J];中国医药科学;2013年18期
6 任海静;李亚芹;任海妹;;社区老年高血压患者用药管理的护理干预研究[J];中国全科医学;2012年25期
7 白智峰;;老年高血压患者脉压和动脉弹性的临床研究[J];临床医学工程;2012年02期
8 吕海姣;严壮志;陆维嘉;;一种基于脉搏波的无创连续血压测量方法[J];中国医疗器械杂志;2011年03期
9 王志刚;赖丽娟;熊冬生;吴效明;;基于AR模型和支持向量机的急性低血压预测[J];中国生物医学工程学报;2011年02期
10 高树枚;宋义林;田中志信;山越宪一;;基于容积补偿法的手腕式血压连续检测系统[J];中国医疗器械杂志;2009年05期
相关博士学位论文 前3条
1 刘磊;基于多普勒超声信号的脉象分析与分类研究[D];哈尔滨工业大学;2013年
2 宋丹;基于记忆—评价—引导机制的免疫优化算法研究[D];中南大学;2013年
3 张冬雨;面向脉诊的脉搏信号与血流信号分类研究[D];哈尔滨工业大学;2010年
相关硕士学位论文 前8条
1 董骁;可穿戴式多生理参数监护系统的研究[D];北京工业大学;2015年
2 刘鑫;基于PTT的无创连续血压测量方法研究[D];云南大学;2015年
3 何龙;基于独立成分分析的脉搏波血压算法研究[D];华中科技大学;2015年
4 甘亚晨;远程生理参数系统的血压测量方法研究[D];重庆理工大学;2015年
5 黄飞;基于贝叶斯网络和本体的高血压患者心血管风险水平分类系统研究[D];太原理工大学;2014年
6 黄轲;基于视觉感知的弱对比度车辆目标识别[D];北京交通大学;2014年
7 拜军;基于生物雷达的脉搏波传导时间提取技术的初步研究[D];第四军医大学;2013年
8 王继寸;基于脉搏波的无创连续血压测量方法研究[D];天津大学;2009年
,本文编号:2276713
本文链接:https://www.wllwen.com/linchuangyixuelunwen/2276713.html