扬州市结核分枝杆菌分子分型及耐药性监测
[Abstract]:Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis complex (MTBC). According to the WHO estimates, nearly one-third of the world's population has been infected with Mycobacterium tuberculosis. Although the prevalence of TB has a downward trend, new cases of TB continue to break through 9 million cases every year, and with the continuous emergence of drug-resistant strains, the treatment and prevention and control of tuberculosis pose a great challenge. Therefore, the identification and classification of Mycobacterium tuberculosis and the monitoring of drug resistance are of great significance to the diagnosis, treatment and prognosis of the disease. In this study, for the clinical isolates of M. tuberculosis in Yangzhou, the species of M. tuberculosis were identified by the combination of traditional bacteriological method and multi-site PCR. The epidemiological characteristics of M. tuberculosis were studied by using the methods of MIRU-VNTR and Spirigotyping. The drug resistance of Mycobacterium tuberculosis was analyzed by MIC and drug-resistant gene test. The isolated culture and identification of Mycobacterium tuberculosis in Yangzhou were determined by acid-fast staining. After the positive of acid-fast bacilli, Mycobacterium tuberculosis (M. tuberculosis) was identified from the positive strain of the acid-fast bacilli by using the PNB/ TCH test and the multi-site PCR. MTB) and comparing the differences between the two methods. The results showed that 289 strains of acid-fast stain positive clinical isolates were further identified by PNB/ TCH and multi-site PCR, of which 270 were MTB and 9 were non-tuberculous mycobacteria (NTM),2 were M. aficianum, and the remaining 8 strains were further identified. There was no statistically significant difference between the results of the PNB/ TCH test and the multi-site PCR. The results showed that the majority of the tuberculosis cases in Yangzhou were caused by Mycobacterium tuberculosis, but there were no M.tuberculosis caused by M.tuberculosis. The molecular typing of the isolated strains of M. tuberculosis was extracted by CTAB method to the genomic DNA of 270 MTB isolates. Genotyping was performed with MIRU-VNTR and Spirigotyping. A total of 8 families were identified, including 233 strains of the Beijing family,15 strains of the T1 family,11 strains of the unknown family strain,4 similar to the Beijing family,3 in the U family,2 in the H3 family,1 in the MANU2 family and 1 in the T2 family. A total of 154 genotypes were identified by the MIRU-VNTR method, of which 144 were 28 clusters, and the remaining 126 were independent. The resolution of the method was 0.960. In the 15 VNTR sites, the HGDI values of the Mtb21 site were the highest, 0.545 and 0.451.The resolution (0.960) of the Mtb21 locus was significantly higher than the resolution (0.253), and the combination of the two typing methods would make the resolution higher. By typing, we found that the isolated strain of M. tuberculosis has a certain gene polymorphism, and the Beijing family genotype strain is the main epidemic strain of the city, and the epidemic trend of the strain is highly concentrated, and 11 new genotypes are also found in the Spirigoinging method. The drug-resistant phenotype and the drug-resistance gene of the isolated strain of Mycobacterium tuberculosis were analyzed by the traditional method and the MIC method, and the drug resistance of the isolates was detected by the traditional method and the MIC method. And sequencing of the drug resistant genes for the strains identified as resistant (mainly aiming at the four first-line drugs: the heterosmotic INH, the rifampin RFP, the streptomycin SM, and the ethylamine-butanol EMB). The results showed that there were 72 drug-resistant strains (41.4%) in 174 strains of MTB and 32 (18.4%) of the multiple drug-resistant strains. There was no statistically significant difference between the results of the drug resistance of 72 strains of drug-resistant strains and the results of the method of MIC and the traditional method. The results showed that the mutation rate was 72.0% (36/50), the mutation rate of inhA was 6.0% (3/50), the mutation rate of rpoB in the resistant strain of RFP was 67.5% (27/40), and the mutation rate of rpoB in the drug-resistant strain was 52.6% (10/19). In the SM-resistant strain, the mutation rate of rrs was 15.4% (6/39), and the rpsL mutation rate was 71.8% (28/39). Compared with the analysis, the mutation of the drug-resistant gene is closely related to the drug-resistant phenotype of the mycobacterium tuberculosis, and the strain of the drug-resistant phenotype does not necessarily have the drug-resistant gene mutation, but the strain of the drug-resistant gene mutation is all resistant. In this study, the distribution and transmission characteristics of Mycobacterium tuberculosis in Yangzhou area were analyzed by means of isolation and identification, molecular typing, drug sensitivity test and resistance gene mutation site analysis in Yangzhou,2012-2015. It provides scientific reference for the customization of tuberculosis control strategy in the region, and lays a foundation for the epidemiological study of tuberculosis, and provides relevant background data for tuberculosis drug resistance monitoring.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R52;R446.5
【相似文献】
相关期刊论文 前10条
1 李勇军 ,李少侠 ,张玉振 ,丁娟 ,王娜;骨伤感染中耐甲氧西林凝固酶阴性葡萄球菌耐药性检测[J];中医正骨;2002年05期
2 朱光明;从宏亮;;临床分离的洋葱伯克霍尔德菌的耐药性分析[J];现代中西医结合杂志;2010年13期
3 王洪波,桂清荣,申正义,刘波波;儿科感染致病菌814株耐药性检测[J];新医学;2000年04期
4 葛超荣,林瑞炮;结核分枝杆菌耐药机制及耐药性检测的研究进展[J];中华检验医学杂志;2001年02期
5 金法祥 ,李水法;绍兴市甲型副伤寒沙门菌耐药性检测[J];医学文选;2001年05期
6 温晓峥,李智潮;176株福氏2a型志贺氏菌耐药性检测[J];四川省卫生管理干部学院学报;2002年01期
7 杨坤,李敬云;人类免疫缺陷病毒1型耐药性检测方法及其应用进展[J];中华检验医学杂志;2005年07期
8 应英;海岛渔民甲型副伤寒沙门菌耐药性监测[J];江西医学检验;2005年02期
9 狄云湘;应英;;某海岛甲型副伤寒沙门菌耐药性监测[J];上海预防医学杂志;2006年10期
10 朱燕飞;;女性生殖道支原体感染及耐药性分析[J];浙江预防医学;2008年10期
相关会议论文 前10条
1 尚旭明;王海燕;;耐甲氧西林葡萄球菌的耐药性分析[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年
2 李羲;;肺癌耐药性检测与克服耐药性策略[A];中华医学会第五届全国胸部肿瘤及内窥镜学术会议论文汇编[C];2011年
3 张健源;李传友;程君;;应用改良的耐药性检测法观察结核分枝杆菌耐药的动态变化[A];中华医学会结核病学分会2010年学术年会论文汇编[C];2010年
4 叶卫红;刘翠银;;268例革兰阴性杆菌肺炎的病原菌分布及耐药性监测[A];湖北省暨武汉市微生物学会分析微生物专业委员会第十届第五次学术会议论文汇编[C];2008年
5 王春光;张铁;韩伟;翟向和;李清艳;吕建存;;禽致病性大肠埃希菌的分离鉴定与耐药性监测[A];京津冀畜牧兽医科技创新交流会暨新思想、新观点、新方法论坛论文集[C];2008年
6 管婧;卓超;苏丹虹;李红玉;;耐甲氧西林金黄色葡萄球菌耐药性及基因分型分析[A];第8届全国抗菌药物临床药理学术会议暨北京大学临床药理研究所成立三十周年论文集[C];2010年
7 杨华;胡忠义;;变性高效液相色谱在结核分枝杆菌耐药性检测中的应用研究[A];2006中国防痨协会全国学会会议论文集[C];2006年
8 肖二辉;石娜;陈永平;;2003-2008年我院细菌耐药性变化的分析[A];2009香港-北京-杭州内科论坛暨2009年浙江省内科学学术年会论文汇编[C];2009年
9 郭瑞林;苏冰;王小华;任忠良;张晓雪;;咸阳地区医院细菌感染发生率与耐药性监测研究[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年
10 谷海瀛;;Helicobacter pylori分离培养鉴定分型及耐药性检测研究[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年
相关重要报纸文章 前4条
1 北京市结核病胸部肿瘤研究所 韩喜琴;RFP和RBT耐药性与rpoB突变有关[N];中国医药报;2011年
2 ;中国建立基因型分析方法[N];中国高新技术产业导报;2002年
3 赵喜明;耐药细菌叫板声急[N];中国医药报;2004年
4 于海源;细菌对消毒剂也产生耐药性[N];中国医药报;2000年
相关博士学位论文 前6条
1 孙慧涌;自由能计算方法在耐药性机制分析和遗传病治疗中的应用[D];苏州大学;2015年
2 孔令聪;牛A型多杀性巴氏杆菌耐药性分析及对部分常用药物耐药机制研究[D];吉林农业大学;2016年
3 苏齐鉴;广西HIV-1耐药性及关联因素研究与主要流行株亚型快速鉴定方法的建立[D];广西医科大学;2009年
4 贾峥;HIV-1表型耐药以及基因型耐药的检测与分析[D];北京协和医学院;2010年
5 王秀英;葡萄提取物消除大肠杆菌耐药性的研究[D];四川大学;2006年
6 张强;副猪嗜血杆菌喹诺酮耐药分子特征及猪链球菌多重耐药机制研究[D];华中农业大学;2015年
相关硕士学位论文 前10条
1 方爽;延边部分地区犬源腹泻致病菌的分离鉴定及耐药性分析[D];延边大学;2015年
2 张金宝;宁夏地区牛源大肠杆菌优势血清型和毒力基因检测及耐药性分析[D];宁夏大学;2015年
3 钱海英;聊城地区临床分离主要病原菌的分布特征及耐药性[D];山东大学;2015年
4 曹蕴;130例表皮葡萄球菌临床分离株的耐药性分析和mecA/icaA/icaD基因研究[D];安徽医科大学;2014年
5 王颖;白城地区动物源链球菌耐药性检测及优化临床用药方案的研究[D];吉林农业大学;2015年
6 卢婷;牛源大肠杆菌耐药性和耐药基因检测及对喹诺酮类药物防突变浓度的测定[D];东北农业大学;2015年
7 张晓丹;猪舍环境大肠杆菌耐药性及其向周边环境传播的研究[D];山东农业大学;2015年
8 杜文燕;重症监护病房呼吸机相关性肺炎与非呼吸机相关性肺炎病原菌及耐药性的分析比较[D];青岛大学;2015年
9 郭倩;反向斑点杂交技术快速检测结核分枝杆菌八种药物耐药性的研究[D];南华大学;2015年
10 彭懿;重庆地区1613例CAP住院儿童病原变迁及耐药性分析[D];重庆医科大学;2015年
,本文编号:2477711
本文链接:https://www.wllwen.com/linchuangyixuelunwen/2477711.html