人体微量营养素缺乏风险关联SNP高通量微流体芯片方法研究与初步应用
发布时间:2020-04-03 06:19
【摘要】:背景:继限制性酶切片断长度多态性和短串联重复序列之后,单核苷酸多态性位点(single-nucleotide polymorphism,SNP)以遗传标记密度高、稳定性高、分型检测易于实现自动化的特点成为第3代多态性标记,在遗传诊断,遗传风险评估、连锁不平衡图谱和遗传关联分析等人类基因组学研究领域显示了强大的应用前景。人体存在营养素需要量个体化遗传特征,通过研究导致功能和表型改变的编码区和调控区的个体化SNP信息,可以基于SNP分析对个体化营养素缺乏风险进行评估和干预,通过基于正常人群和缺乏人群的流行病学观察及人群SNP基因分型检测,可以建立人群SNP基因型频率分布特征,获得与营养素缺乏风险高度关联的SNP位点公共数据库,从而实现基于个体差异或人群差异特征的精准营养干预。为此,探索快速、准确、高通量的SNP基因分型技术以及基于SNP检测对人体营养缺乏风险进行评估的研究必要而迫切。目的:一、研究建立人体微量营养素缺乏风险关联SNP高通量微流体芯片方法通过文献荟萃分析筛选提取营养相关联的SNPs,优化血液和唾液样本DNA自动化提取程序,建立适宜的引物设计方法,采用微流体芯片技术,建立微流体芯片营养SNP的检验方法,实现对营养不良风险的评估。二、微流体芯片方法的初步应用采用人群对微流体芯片方法进行测试,初步分析基因型数据的地域分布特征,并与生化数据进行关联分析,研究营养SNPs的检验方法在微量营养素缺乏风险评估中应用的可行性。方法:采用自动化提取工作站建立血液和唾液样本的DNA提取流程,采用竞争性等位基因PCR原理设计引物,纳入了 52个与维生素A,D,E,B_(6),B2,叶酸,钙,铁,锌和硒微量营养素缺乏易感性关联较大的SNP位点,SNP检索和纳入原则是在中国生物医学文献数据库、相关期刊论文、万方数据库、重庆维普中文科技期刊全文数据库,PubMed数据库和Web of Science中检索从建库至2017年6月25日发表的相关文献,检索主题词分别为“single nucleotide polymorphism or SNP”and“vitamin A,D,E,B_(6),B_(12),FA,Ca,Iron,Zn,Se”和“单核苷酸多态性”和“维生素A,D,E,B_(6),B_(12),叶酸,钙,铁,锌和硒”。同时手工检索文献,并辅以文献追踪法收集更多相关文献。建立创新性SNP微流体芯片检测方法,并对如下指标进行评估:(1)防交叉污染能力的测试:奇数反应孔中预点引物混合液,偶数反应孔中不点制无引物混合液。另外,采用凝胶电泳试验对芯片对应反应孔中的溶液进行检测。试验重复操作六次。(2)引物特异性分型能力和准确性评估:先将52个SNP位点对应的引物混合液分别预点于不同的反应孔中,待引物混合液干燥后再将156个不同的DNA样本预点于不同的反应孔中,室温静止30 min使得芯片干燥,DNA样本的浓度为10 ng/μl,随后将PCR预混液注入到进样通道中。所有的芯片分型检测结果均与对应的二代测序(NGS)分型结果进行比较。试验重复操作六次。(3)适宜DNA反应浓度检测:先将52个SNP位点对应的引物混合液分别预点于不同的反应孔中,再将52个不同的DNA样本中每个样本都按照1 ng/pl,5ng/μl,10ng/μl和15ng/μl进行四个浓度梯度稀释。试验重复操作六次。(4)重现性检测:先将52个SNP位点对应的引物混合液分别预点于不同的反应孔中,重现性试验采用一个DNA样本进行检测。试验重复操作六次。(5)临床血液样本多种营养素缺乏风险筛查评估应用:采用所建立的成熟的芯片分型检测方法,随机选取六个临床样本进行评估应用。先将52个SNP位点对应的引物混合液分别预点于不同的反应孔中,随后按照芯片检测流程进行检测,并对检测结果进行分析。(6)血液中提取的DNA与唾液中提取的DNA在芯片上分型结果的比较:分别获得三个人的血液DNA样本,来自于同样的三个人的唾液DNA样本。先将52个SNP位点对应的引物混合液分别预点于不同的反应孔中,随后按照芯片检测流程进行检测,并对检测结果进行分析。(7)运用二代测序方法对芯片分型结果进行验证,设计二代测序所需引物序列,目的扩增片段长度约300~450 bp,包含该SNP位点。目的片段的扩增,序列测定工作均由生工生物工程(上海)股份有限公司完成。运用建立的高通量微流体芯片基因分型检测方法,对1130份血细胞样本进行了基因分型检测,对每份样本检测与人体微量营养素维生素A,D,E,B_(6),B_(12),叶酸,钙,铁,锌和硒等微量营养素缺乏风险高度关联的143个SNP遗传标记物。该143个SNP位点的纳入原则同上所述。铁营养素相关生化指标与SNP位点易感性分析中,CRP10 mg/l的人被排除在这项研究之外。体内铁储量采用如下公式进行计算:体内铁储量(Body iron,BI,mg/kg)=-[log(sTfR*1000/SF)-2.8229]/0.1207。由于数据缺失量小于5%,对连续变量中的缺失数据采用现有数据把原始数据中的缺失数值模拟出来。采用Q-Q图和Shapiro检验数据是否符合正态分布,若不符合正态分布,则采用扭曲线性混合模型(Warped linear mixed model,Warped-LMM)对生化指标数据进行变换。扭曲线性混合模型是在标准混合线性模型的基础上建立起来的一种分析方法,允许在进行遗传分析的同时适应表型变换,应用在生化指标变量中,以改善其与正态分布的配合度,因为SF和sTfR浓度呈正偏态分布。采用R软件包进行PCA、Kinship和SNP位点之间连锁不平衡分析,分析候选SNP位点的特征。如有种群结构的存在,采用FaST-LMM模型(Factored spectrally transformed linear mixed models)进行关联分析,首先采用连续变量探索基因多态性位点与各种营养素之间的关联性,随后再采用分类变量对所有的表型数据和基因型数据进行关联分析。SF的分组标准:参照《WST 465-2015人群铁缺乏筛查办法》将铁缺乏的标准设定为SF25 ng/ml,当CRP≤5 mg/1时,当SF25 μg/1时判定为铁缺乏组,当SF≥25 μg/1时判定为正常人群;当CRP5 mg/1时,当SF32μg/1时判定为铁缺乏组;当SF≥25μg/1时判定为正常人群。sTfR的分组标准:sTfR4.4 mg/1时为铁缺乏组,sTfR≥4.4mg/1时判定为正常人群。参照《WS/T600—2018人群叶酸缺乏筛查方法》将叶酸(FA)的缺乏标准设定为FA4 ng/ml时为叶酸缺乏组,FA≥4 ng/ml时判定为正常人群。同型半胱氨酸(HCY)和维生素B_(12)的缺乏标准参照检测试剂盒上提供的数据:HCY≥10μM时为病例组,HCY10μM时判定为正常人群。B_(12)的分组标准:B_(12)425 pg/ml时为B_(12)缺乏组,B_(12)425 pg/ml时判定为正常人群。采用卡方检验分析不同基因型以及等位基因在民族之间的分布差异,采用方差分析分析不同基因以及等位基因携带人群的各种生化指标的分布情况。根据P值0.05的阈值确定是否有统计学意义。结果:一、建立了 SNP高通量微流体芯片方法和人体微量营养素缺乏风险检测方法,包括3个主要流程:建立了自动化DNA提取流程,通过对带有凝胶的血细胞、EDTA抗凝全血、离心去血清后的血细胞、新鲜唾液、唾液保存液保存的唾液样本和口腔拭子采集的口腔黏膜细胞等各种样本的提取效果比较,结果显示96份新鲜唾液获取的DNA浓度为150.02±50.97 ng/μl,OD260/280为1.80±0.15,OD260/280为1.50±0.21。从新鲜唾液中获取DNA含量理想,DNA降解程度低,提取方法简单,应作为唾液标本采集的首选,是开展营养基因组学人群研究的有效方法。分析并应用了竞争性等位基因特异PCR扩增设计方法。建立了人体微量营养素缺乏风险关联SNP微流体芯片检测标准化流程,对方法的评估结果显示应用物理性阻断技术实现了相邻反应孔间的零交叉污染。本研究将5 ng/μl和15 ng/μl分别作为血液和唾液来源的样本的适宜DNA反应浓度检测下限值。芯片平台上相同样本精密度为0.67%~26.06%,相同位点的重复结果上没有太大的差异。该研究在重现性方面显现出良好的实验结果,无论在芯片内还是在芯片间,重现性均良好。六个临床样本多种营养素缺乏风险筛查彩色图谱直观显示出多种营养素缺乏风险,以及单一营养素缺乏风险程度,同时也表明个体在营养素缺乏风险程度上各有其独特性。通过分析三个个体血液和唾液两种来源的DNA样本在微流体芯片上的52个SNP位点分型结果,并且与二代测序结果进行比较,结果显示三个个体血液和唾液两种来源的DNA样本在芯片上的52个位点分型结果完全一致,与二代测序的结果也完全一致。二、对143个MDR-SNPs位点地域分布特征及关联分析进行了初步探索主成分分析(PCA分析)结果显示了存在群体遗传结构。对主成分1和主成分2与种群间关系的方差分析结果为P1.36e-14,表明143个SNP位点存在显著的民族差异。这与样本的最初个体信息吻合,也进一步印证了本研究中采用的基因分型技术的准确性良好。采用函数snpgdsPCACorr分析了主成分中前三个成分与SNP位点之间的关系,结果表明:3号染色体上的基因多态性位点与其他染色体上的多态性位点均呈现显著的差异,主成分分析PC1中显示位于RAB_(6)B基因上的rs2280673解释效度在25%以下,位于TF基因上的rs1799852解释效度为25-500%,位于RBP2基因上的rs2118981位点和SRPRB基因上的rs1830084位点解释效度在50-75%之间,位于TF基因上的rs1358024,rs1525892,rs 1880669,rs381]647,rs3811658,rs6794945,rs7638018,rs8177248八个多态性位点的解释效度为75%以上。采用卡方检验分析不同基因型以及等位基因在民族之间的分布差异,采用方差分析分析不同基因以及等位基因携带人群的各种生化指标的分布情况,获得了大量具有统计学意义的位点。结论:本研究建立了人体微量营养素缺乏风险关联SNP微流体芯片检测方法,主要包括构建了适合于大规模流行病学研究的唾液基因组自动化DNA提取方法,建立了竞争性等位基因特异PCR扩增引物设计方法,建立了一种高通量微流体芯片基因分型检测方法,并采用1130人的小样本对方法进行了初步测试应用。
【图文】:
图2数据分析技术线路图逡逑Figure邋2邋Data邋analysis邋technology邋route邋diagram逡逑18逡逑
中国疾病预防控制中心博士学位论文逦逡逑相同的洗脱体积下提取新鲜样本的DNA浓度略高于-20邋°C保存一个月样本获逡逑的DNA浓度,建议实验室在获得唾液样本后尽快提取DNA。随后对实验室里逡逑2份唾液样本中的DNA进行了提取和检测,获得了邋96份合格的DNA,,成功逡逑为邋94.12%。逡逑
【学位授予单位】:中国疾病预防控制中心
【学位级别】:博士
【学位授予年份】:2019
【分类号】:R151.42;R440
本文编号:2613048
【图文】:
图2数据分析技术线路图逡逑Figure邋2邋Data邋analysis邋technology邋route邋diagram逡逑18逡逑
中国疾病预防控制中心博士学位论文逦逡逑相同的洗脱体积下提取新鲜样本的DNA浓度略高于-20邋°C保存一个月样本获逡逑的DNA浓度,建议实验室在获得唾液样本后尽快提取DNA。随后对实验室里逡逑2份唾液样本中的DNA进行了提取和检测,获得了邋96份合格的DNA,,成功逡逑为邋94.12%。逡逑
【学位授予单位】:中国疾病预防控制中心
【学位级别】:博士
【学位授予年份】:2019
【分类号】:R151.42;R440
本文编号:2613048
本文链接:https://www.wllwen.com/linchuangyixuelunwen/2613048.html
最近更新
教材专著