以植物、细菌和有机配体合成的银纳米颗粒(新型的友好的害虫防控技术)的表征和生物毒性
发布时间:2024-04-08 20:16
纳米技术在跨学科交叉研究是个有前途的研究领域。它在杀虫剂、制药、电子工业和农业均有涉及。纳米技术具有很强的应用前景且很有价值。基于杀虫剂、农药和昆虫驱避剂的纳米技术在害虫控制取得了很大的进展。传统的防治手段在农业上防治害虫是不合理,它们的使用除了降低土壤肥力还对动物和人类造成不利的影响。纳米技术能提供绿色有效的方案控制农业上的有害生物而不破坏环境。这种方案主要集中在害虫管理的传统策略和纳米材料作为现代技术潜在的害虫控制技术。节肢动物能取食植株影响其生长且传播病毒病,此外,一些节肢动物通常携带致命的病原菌,这些病原菌能侵染人类和动物。其中,蚊子(双翅目:蚊科),是多种病原菌的载体,威胁全世界人类的健康,如疟疾、登革热、黄热病、乙型脑炎和丝虫病。利用基于纳米技术的非常规技术控制蚊虫是当前的大趋势。我们提出了桂皮瘘果肉-银纳米颗粒作为创新性的有效的的技术控制蚊虫。我们使用FT-IR,TEM,SEM,紫外-可见光度法和XRD对银纳米颗粒进行表征。银纳米颗粒在24、48和72小时的处理后,对白纹伊蚊和淡色库蚊Ⅰ龄-Ⅳ龄幼虫和蛹具有很强的毒性效果。白纹伊蚊致死浓度LC50范围为8.3 mg/L(Ⅰ...
【文章页数】:146 页
【学位级别】:博士
【文章目录】:
Acknowledgement
Abstract
摘要
List of Abbreviation
Chapter 1 Introduction
Chapter 2 Literature Review
2.1. Nanotechnology: An Advanced Approach to the Development of Potent Insecticides
2.2. Mechanical Reduction of Particle Size
2.3. Plant-Based Synthesis of Silver Nanoparticles
2.4. Bacteria-mediated synthesis of AgNPs
2.4.1. Extracellular synthesis
2.4.2. Synthesis using culture supernatant
2.4.3. Synthesis using cell-free extract
2.5. Possible mechanisms
2.6. Agricultural pests and mosquito
2.6.1. Brown planthopper (Nilaparvata lugens)
2.6.2. Life History of Nilaparvata lugens
2.6.3. The economic importance for brown planthopper
2.7. Mosquitoes
2.7.1. Life History of mosquito
2.7.2. The economic importance of mosquitoes
Chapter 3 Controlling Aedes albopictus and Culex pipiens pallens using silvernanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode ofaction
3.2. Introduction
3.3. Materials and Methods
3.3.1. Chemicals and Plant materials
3.3.2. Preparation of plant fruit extract
3.3.3. Preliminary phytochemical testing
3.3.4. Synthesis of silver nanoparticles
3.3.5. Characterization of synthesized C. fistula/AgNPs
3.3.5.1. UV-Vis spectral analysis
3.3.5.2. FT-IR analysis
3.3.5.3. SEM analysis
3.3.5.4. TEM analysis
3.3.5.5. X-ray diffraction analysis of AgNPs
3.3.6. Mosquito larvicidal and pupicidal activity of AgNPs
3.3.6.1. Larvae and pupae collection
3.3.6.2. Larvicidal and pupicidal bioassay
3.3.7. Examination for the mechanism of AgNPs for mosquito larvicidal potential
3.3.7.1. Preparation of whole body homogenates
3.3.7.2. Determination of protein concentration
3.3.7.3. Acetylcholinesterase assays
3.3.7.4. Carboxylesterase assays
3.3.8. Statistical analysis
3.4. Results and discussion
3.4.1. Preliminary phytochemical testing
3.4.2. UV-Vis spectroscopy
3.4.3. FT-IR analysis
3.4.4. SEM, TEM analyses and EDX spectrum
3.4.5. X-ray diffraction analysis of AgNPs
3.4.6. Mosquito larvicidal and pupicidal activity
3.4.7. The mechanism of AgNPs and plant extract on mosquito larvae
Chapter 4 Synthesis and characterization of silver nanoparticles using Bacillusamyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens andits antimicrobial activity
4.2. Introduction
4.3. Materials and methods
4.3.1. Isolation and definition of the bacteria
4.3.2. Extracellular synthesis silver nanoparticles
4.3.3. Characterization of Bacillus-AgNPs
4.3.4. Larvicidal and pupicidal activity
4.3.4.1. Larvae and pupae collection
4.3.4.2. Larvicidal and pupicidal assay
4.3.5. In vitro, the effects of nanoparticles, Bacillus strains against Xanthomonas oryzaepv. Oryzae
4.3.6. Statistical analysis
4.4. Results and discussion
4.4.1. Characterization and biological synthesis of AgNPs
4.4.1.1. UV-Vis spectroscopy
4.4.1.2. FT-IR analysis
4.4.1.3. SEM and X-ray diffraction analysis
4.4.1.4. TEM and EDX spectrum analyses
4.4.2. Toxicity of bacillus-AgNPs to mosquito larvae and pupae
4.4.4. Antimicrobial efficiency of nanoparticles and Bacillus strains
Chapter 5 Novel applications of organic ligands formulations as nanoparticles againstagriculture pests and its mode of action
5.2. Introduction
5.3. Materials and Methods
5.3.1. Chemicals
5.3.2. Synthesis of 2'-Amino-1,1':4',1"-terphenyl-3,3",5,5"-tetracarboxylic acid (H4L)
5.3.3. Synthesis of 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)
5.3.4. Synthesis of silver as a nanoparticle with H4L and TBAPy
5.3.5. Characterization of synthesized AgNPs
5.3.5.1. UV-Vis spectral analysis
5.3.5.2. FT-IR analysis
5.3.5.3. SEM and EDS analyses
5.3.5.4. TEM and X-ray diffraction analyses of AgNPs
5.3.5.5. Silver nanoparticles size analysis
5.3.6. Insects
5.3.7. Toxicity bioassay
5.3.8. Action mechanism of AgNPs on N. lugens
5.3.8.1. Preparation of whole body homogenates
5.3.8.2. Determination of protein concentration
5.3.8.3. Acetylcholinesterase assays
5.3.8.4. Esterase assay
5.3.8.5 Phosphatase assay
5.3.9. Data analysis
5.4. Results and discussion
5.4.1. Synthesis of H4L and TBAPy
5.4.2. Synthesis of silver metal with organic ligands
5.4.3. Characterization of H4L-NPs and TBAPy NPs
5.4.3.1. UV Vis spectroscopy
5.4.3.2. FT-IR analysis
5.4.3.3. SEM analyses and EDX spectrum
5.4.3.4. TEM and X-ray diffraction analysis of AgNPs
5.4.3.5. Nanoparticle size analysis
5.4.4. Toxicity of AgNPs to unsexed adult of brown planthoppers
5.4.5. Inhibitory activity assessment of H4L, TBAPy, and synthesized AgNPs on BPHenzymes
Chapter 6 Myco-synthesis of silver nanoparticles using pathogenic bacteriaPseudomonas aeruginosa, Staphylococcus aureus and nonpathogenic bacteriaBacillus subtilis against brown planthopper Nilaparvata lugens (Stal) (Homoptera:Delphacidae)
6.2. Introduction
6.3. Materials and methods
6.3.1. Isolation and definition of the bacteria
6.3.2. Extracellular synthesis silver nanoparticles
6.3.3. Characterization of synthesized silver nanoparticles
6.3.4. Nilaparvata lugens rearing
6.3.5. Insecticidal experiments against brown planthopper
6.3.6. Statistical analysis
6.4. Results and discussion
6.4.1. Characterization of bacteria-synthesized silver nanoparticles
6.4.1.1. Visual examination and UV-visible spectrum
6.4.1.2. SEM and EDX spectroscopy analysis
6.4.1.3. TEM and XRD:pureness and crystalline nature of bacteria-NPs
6.4.1.4. Fourier transforms infrared spectroscopy of bacteria-synthesizedAgNPs
6.4.2. Characteristic and uses of biosynthesized silver nanoparticles
6.4.3. Characteristic and uses of biosynthesized silver nanoparticles
Chapter 7 General conclusions
References
List of Publications
本文编号:3948753
【文章页数】:146 页
【学位级别】:博士
【文章目录】:
Acknowledgement
Abstract
摘要
List of Abbreviation
Chapter 1 Introduction
Chapter 2 Literature Review
2.1. Nanotechnology: An Advanced Approach to the Development of Potent Insecticides
2.2. Mechanical Reduction of Particle Size
2.3. Plant-Based Synthesis of Silver Nanoparticles
2.4. Bacteria-mediated synthesis of AgNPs
2.4.1. Extracellular synthesis
2.4.2. Synthesis using culture supernatant
2.4.3. Synthesis using cell-free extract
2.5. Possible mechanisms
2.6. Agricultural pests and mosquito
2.6.1. Brown planthopper (Nilaparvata lugens)
2.6.2. Life History of Nilaparvata lugens
2.6.3. The economic importance for brown planthopper
2.7. Mosquitoes
2.7.1. Life History of mosquito
2.7.2. The economic importance of mosquitoes
Chapter 3 Controlling Aedes albopictus and Culex pipiens pallens using silvernanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode ofaction
3.2. Introduction
3.3. Materials and Methods
3.3.1. Chemicals and Plant materials
3.3.2. Preparation of plant fruit extract
3.3.3. Preliminary phytochemical testing
3.3.4. Synthesis of silver nanoparticles
3.3.5. Characterization of synthesized C. fistula/AgNPs
3.3.5.1. UV-Vis spectral analysis
3.3.5.2. FT-IR analysis
3.3.5.3. SEM analysis
3.3.5.4. TEM analysis
3.3.5.5. X-ray diffraction analysis of AgNPs
3.3.6. Mosquito larvicidal and pupicidal activity of AgNPs
3.3.6.1. Larvae and pupae collection
3.3.6.2. Larvicidal and pupicidal bioassay
3.3.7. Examination for the mechanism of AgNPs for mosquito larvicidal potential
3.3.7.1. Preparation of whole body homogenates
3.3.7.2. Determination of protein concentration
3.3.7.3. Acetylcholinesterase assays
3.3.7.4. Carboxylesterase assays
3.3.8. Statistical analysis
3.4. Results and discussion
3.4.1. Preliminary phytochemical testing
3.4.2. UV-Vis spectroscopy
3.4.3. FT-IR analysis
3.4.4. SEM, TEM analyses and EDX spectrum
3.4.5. X-ray diffraction analysis of AgNPs
3.4.6. Mosquito larvicidal and pupicidal activity
3.4.7. The mechanism of AgNPs and plant extract on mosquito larvae
Chapter 4 Synthesis and characterization of silver nanoparticles using Bacillusamyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens andits antimicrobial activity
4.2. Introduction
4.3. Materials and methods
4.3.1. Isolation and definition of the bacteria
4.3.2. Extracellular synthesis silver nanoparticles
4.3.3. Characterization of Bacillus-AgNPs
4.3.4. Larvicidal and pupicidal activity
4.3.4.1. Larvae and pupae collection
4.3.4.2. Larvicidal and pupicidal assay
4.3.5. In vitro, the effects of nanoparticles, Bacillus strains against Xanthomonas oryzaepv. Oryzae
4.3.6. Statistical analysis
4.4. Results and discussion
4.4.1. Characterization and biological synthesis of AgNPs
4.4.1.1. UV-Vis spectroscopy
4.4.1.2. FT-IR analysis
4.4.1.3. SEM and X-ray diffraction analysis
4.4.1.4. TEM and EDX spectrum analyses
4.4.2. Toxicity of bacillus-AgNPs to mosquito larvae and pupae
4.4.4. Antimicrobial efficiency of nanoparticles and Bacillus strains
Chapter 5 Novel applications of organic ligands formulations as nanoparticles againstagriculture pests and its mode of action
5.2. Introduction
5.3. Materials and Methods
5.3.1. Chemicals
5.3.2. Synthesis of 2'-Amino-1,1':4',1"-terphenyl-3,3",5,5"-tetracarboxylic acid (H4L)
5.3.3. Synthesis of 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)
5.3.4. Synthesis of silver as a nanoparticle with H4L and TBAPy
5.3.5. Characterization of synthesized AgNPs
5.3.5.1. UV-Vis spectral analysis
5.3.5.2. FT-IR analysis
5.3.5.3. SEM and EDS analyses
5.3.5.4. TEM and X-ray diffraction analyses of AgNPs
5.3.5.5. Silver nanoparticles size analysis
5.3.6. Insects
5.3.7. Toxicity bioassay
5.3.8. Action mechanism of AgNPs on N. lugens
5.3.8.1. Preparation of whole body homogenates
5.3.8.2. Determination of protein concentration
5.3.8.3. Acetylcholinesterase assays
5.3.8.4. Esterase assay
5.3.8.5 Phosphatase assay
5.3.9. Data analysis
5.4. Results and discussion
5.4.1. Synthesis of H4L and TBAPy
5.4.2. Synthesis of silver metal with organic ligands
5.4.3. Characterization of H4L-NPs and TBAPy NPs
5.4.3.1. UV Vis spectroscopy
5.4.3.2. FT-IR analysis
5.4.3.3. SEM analyses and EDX spectrum
5.4.3.4. TEM and X-ray diffraction analysis of AgNPs
5.4.3.5. Nanoparticle size analysis
5.4.4. Toxicity of AgNPs to unsexed adult of brown planthoppers
5.4.5. Inhibitory activity assessment of H4L, TBAPy, and synthesized AgNPs on BPHenzymes
Chapter 6 Myco-synthesis of silver nanoparticles using pathogenic bacteriaPseudomonas aeruginosa, Staphylococcus aureus and nonpathogenic bacteriaBacillus subtilis against brown planthopper Nilaparvata lugens (Stal) (Homoptera:Delphacidae)
6.2. Introduction
6.3. Materials and methods
6.3.1. Isolation and definition of the bacteria
6.3.2. Extracellular synthesis silver nanoparticles
6.3.3. Characterization of synthesized silver nanoparticles
6.3.4. Nilaparvata lugens rearing
6.3.5. Insecticidal experiments against brown planthopper
6.3.6. Statistical analysis
6.4. Results and discussion
6.4.1. Characterization of bacteria-synthesized silver nanoparticles
6.4.1.1. Visual examination and UV-visible spectrum
6.4.1.2. SEM and EDX spectroscopy analysis
6.4.1.3. TEM and XRD:pureness and crystalline nature of bacteria-NPs
6.4.1.4. Fourier transforms infrared spectroscopy of bacteria-synthesizedAgNPs
6.4.2. Characteristic and uses of biosynthesized silver nanoparticles
6.4.3. Characteristic and uses of biosynthesized silver nanoparticles
Chapter 7 General conclusions
References
List of Publications
本文编号:3948753
本文链接:https://www.wllwen.com/nykjlw/dzwbhlw/3948753.html