当前位置:主页 > 农业论文 > 林业论文 >

亚高山针叶林—溪流—河流集合生态系统的氮磷硫迁移过程

发布时间:2020-06-14 16:00
【摘要】:集合生态系统(mate-ecosystem)是不同但又相互联系的生态系统通过物质迁移、能量转换和生物迁移等空间流(spatial flow)构成的复杂生态系统,研究生物元素在集合生态系统的迁移过程,对于理解不同生态系统之间的生物元素生物地球化学联系具有十分重要的科学价值。地处长江上游地区和青藏高原东缘的亚高山针叶林是我国第三大林区,在水源的涵养、保持水土、吸存大气中的CO2、生物多样性的保育等方面具有十分重要和不可替代的生态战略地位,是长江上游生态安全的屏障。因此,基于集合生态系统理论,研究亚高山针叶林—溪流—河流集合生态系统的氮、磷和硫迁移过程,对于深入了解亚高山针叶林与对接水体的生物地球化学联系具有重要的理论价值,可为长江上游生态安全屏障建设提供非常重要的科学依据。但迄今为止,国内外相关研究报道甚少。为此,本研究以四川理县毕棚沟亚高山针叶林、溪流、河岸和河流为研究对象,以森林溪流为纽带,构建亚高山森林—溪流—河流集合生态系统,采取动态监测和室内分析相结合的方法,研究了 2015年9月至2016年8月期间,氮、磷和硫三种生物元素在亚高山针叶林—溪流—河流集合生态系统的迁移特征,特别关注了不同关键时期的迁移特征,以期为深入理解亚高山针叶林与对接水体的生物地球化学循环联系提供科学依据。研究区域内,溪流水体总体积为73.74 m3。研究表明,溪流长度、水面宽、水位深、流速和流量平均值范围分别为10-255 m、0.34-1.28m、3.70-11.72cm、0.05-0.27 m/s和0.01-0.15 m3/s。进一步相关分析可得,流速与长度和水位深呈显著正相关关系,流量与水位深和流速呈极显著正相关关系。观测期内,共计收集样品13次,溪流区域凋落物输入的总量为318.16kg/y;由于河流两岸林木密度小,且水流相对湍急,未收集到凋落物。凋落物进入集合生态系统后,进入亚高山针叶林生态系统的部分包括两种去向,一是通过分解直接参与生物地球化学循环,二是经过雨水的冲刷随地表径流和地下渗滤进入到溪流和河流水体中;进入溪流的凋落物,亦包括两种去向,一是随溪流水体直接进入河流,然后通过河流输出集合生态系统,二是经过溪流两岸的截留,沉积到溪流底部,进而通过沉积物与水体的界面浓度差释放营养元素,最后进入河流输出亚高山针叶林—溪流—河流集合生态系统。观测期内,凋落物总输出总量为4.53 kg/y,而溪流水体流量高达83808.00 m3/d,这说明溪流水体是集合生态系统最主要的输出方式。是森林集合生态系统元素迁移和输出的关键途径。观测期内,不同观测时间通过凋落物的形式输入溪流区域的氮、磷和硫元素输入量范围分别为0-12.24kg/hm2、0.05-50.70kg/hm2和 0.09-2.35kg/hm2。其中,氮元素和磷元素不同长度的溪流表现出相对一致的变化趋势,氮元素输入量有两次峰值,第一次峰值—也是最大值出现在2015年凋落物高峰期,第二次峰值—凋落物小高峰期输入量仅次于高峰期,而在2015年冬季,氮元素输入量最小;与氮元素输入特征不同的是,磷元素输入量在凋落物小高峰期达到最大值,凋落物高峰期次之,冬季最小;硫元素输入量不同长度溪流表现出不一致的变化趋势,对于长度较短(10-20rm)的溪流(图9a)而言,凋落物高峰期硫元素输入量最大(0.38 kg/hm2),仅次于凋落物高峰期的是凋落物小高峰期(0.17 kg/hm2);对于研究区域内长度在20-70 m之间的溪流而言,最大值出现在凋落物小高峰期为1.67 kg/hm2,凋落物高峰期次之为0.47 kg/hm2;对于研究区域内长度在90-260m之间的溪流而言,最大值出现在凋落物高峰期为0.96 kg/hm2,冬季次之为0.30 kg/hm2。观测期研究区域内溪流水体全氮储量范围为0.69-12.23 kg/hm2,且溪流特征显著影响水体全氮储量,溪流水体全氮储量与溪流的长度、水位深、水面宽度、流速和流量均呈现极显著正相关关系,相关系数在0.740-0.997之间。在同一条溪流中,表现出相对一致的变化规律,溪流水体全氮储量在凋落物高峰期(2015年9月15日)最高,冬季(2016年4月13日)最低;溪流水体全磷储量范围为0.03-7.72 kg/hm2,在2015年9月和2016年5-7月,溪流水体全磷储量和溪流本身的长度呈现极显著正相关关系,其他时间均呈现显著正相关关系,溪流水体全磷储量与溪流其他特征均为良好的正相关关系,但不显著。溪流水体全硫储量范围分别为4.02-9.29 g/hm2,2015年8月和2015年10月至2016年5月,全硫储量和溪流长度均呈现极显著正相关关系,2016年7月下旬,全硫储量与溪流流速极显著正相关,相关系数为0.750,试验期间剩余时间全硫储量与溪流长度呈现显著正相关关系。这些结果表明,降水量和溪流长度对溪流水体中全氮、全磷和全硫储量的影响最为突出。综上所述,氮、磷和硫元素通过凋落物的形式输入亚高山针叶林-溪流-河流集合生态系统,经过凋落物的迁移,将氮、磷和硫元素重新分配到集合生态系统内不同生态系统中。在组成集合生态系统的各组分中,氮、磷和硫元素通以凋落物和水分为载体,从亚高山针叶林生态系统进入森林溪流生态系统,此后,一部分通过溪流水体直接输送到河流生态系统中,另一部分经过溪流两岸的冲刷等外力作用与生物遗体一同沉积储存在溪流沉积物中,这一部分随着时间的变化,氮、磷和硫元素含量增加,显著高于溪流水体,形成浓度差后再将元素释放回水体中,随着溪流水体的流动,输出溪流生态系统,之后进入河流生态系统;最后由河流生态系统输出亚高山针叶林—溪流—河流集合生态系统。这些结果对深入认识水生—陆地连续生态系统之间的氮、磷和硫元素的空间联系提供了基础数据,也为川西亚高山针叶林生态系统的管理提供了科学依据为之后的研究提供了新思路。
【学位授予单位】:四川农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S718.5
【图文】:

溪流,地理位置,亚高山针叶林,生态系统


图1研究区及懫样溪流的地理位置(A-0为溪流编号)逡逑Fig.l邋Location邋of邋the邋study邋area邋and邋sampling邋streams邋(A-0邋are邋the邋numbei邋of邋streams)逡逑2.3.2技术路线逡逑亚高山针叶林一溪流一河流集合生态系统氮、磷和硫元素的迁移过程逡逑逦V逦逡逑不同关键时期亚高山针叶林一溪流一河流集合生态系统逡逑氮、磷和硫元素迁移过程是否相同?溪流特征对溪流生态逡逑系统中氮、磷和硫元素迁移过程是否有影响?逡逑逦^逦邋I逦一 ]逦逡逑亚向山针叶林--溪流--河流逦亚高山针叶林--溪流--河流逦亚pj山针叶林--溪流-?河流逡逑集合生态系统氮的输入/输逦集合生态系统淲的输入/输逦集合生态系统硫的输入/输逡逑出动态及其影响因素逦出动态及其影响因素逦出动态及其影响因素逡逑—逦M/逡逑于亚高山针叶林、溪流和河流3种生态系统分R%在不同关逡逑键时期采集样品,带回实验室定量分析逡逑,逦±逦,逡逑 ̄

溪流,河流水体,全氮,储量


图4溪流和河流水体全氮储量特征注:大写字母A、B、C、D、E、F、G、H、I、J、K、L、M、逡逑N和O代表溪流编号逡逑Fig.邋4邋The邋storage邋characteristics邋of邋total邋nitrogen邋in邋streams邋and邋rivers邋PS:邋Capital邋letters邋A,邋B,邋C,邋D,逡逑E,邋F,邋G,邋H,邋I,邋J,邋K,邋L,邋M,邋N邋and邋O邋where邋is邋the邋number邋of邋streams逡逑由图2可知,在试验期间(2015年9月-2016年8月),研究区域内溪流水体全逡逑氮总储量范围为0.69-12.23邋kg/hm2,其中,2015年凋落物高峰期(9月)最高,2015逡逑年冬季至次年雪被融化前最低。不同长度溪流变化趋势基本一致,均随时间变化表现逡逑为急剧升高一急剧下降一缓慢升高一缓慢下降的趋势。其中,溪流水体氮储量第一个逡逑峰值出现在生长季节中的雨季(2015年9月),第二个峰值出现在生长季节的凋落物逡逑小高峰期(2016年5月)。河流水体中全氮储量(d)变化不大,范围为3.25-14.49逡逑kg/hm2。逡逑表3观测期溪流水体全氮储量与溪流特征相关性分析逡逑

【相似文献】

相关期刊论文 前10条

1 刘璐;赵常明;徐文婷;申国珍;谢宗强;;神农架常绿落叶阔叶混交林凋落物动态及影响因素[J];植物生态学报;2018年06期

2 张宏珲;薛银婷;林永慧;何兴兵;;酸解对香樟凋落物分解过程的短期影响[J];吉首大学学报(自然科学版);2016年06期

3 戚德才;;凋落物分解过程中土壤微生物群落的变化[J];河南农业;2016年11期

4 陈瑶;邵英男;李云红;;浅析森林凋落物分解影响因素[J];花卉;2017年08期

5 刘延坤;;氮沉降对于森林凋落物分解的影响机理研究[J];花卉;2017年16期

6 马承恩;孔德良;陈正侠;郭俊飞;;根系在凋落物层中的生长及其对凋落物分解的影响[J];植物生态学报;2012年11期

7 李秀云;李润祥;;影响森林凋落物分解的因素[J];农民致富之友;2012年20期

8 曲浩;赵学勇;赵哈林;王少昆;;陆地生态系统凋落物分解研究进展[J];草业科学;2010年08期

9 王相娥;薛立;谢腾芳;;凋落物分解研究综述[J];土壤通报;2009年06期

10 徐国良;莫江明;周国逸;薛花;;氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J];生态环境;2005年06期

相关会议论文 前7条

1 王锐萍;刘强;林开豪;薛宁;文艳;;尖峰岭凋落物分解过程微生物动态变化[A];廿一世纪微生物学发展前沿与应用新技术研讨会论文摘要集[C];2003年

2 于淑玲;;腐生真菌在森林生态系统中凋落物分解作用的研究[A];首届全国农业环境科学学术研讨会论文集[C];2005年

3 孙书存;安树青;刘茂松;高贤明;;物种多样性与植物凋落物分解的相互关系:研究概述[A];生物多样性保护与区域可持续发展——第四届全国生物多样性保护与持续利用研讨会论文集[C];2000年

4 贺美;田秋香;赵汝东;王兴刚;刘峰;;凋落叶中木质素的降解特征及其微生物影响机制——以亚热带山地常绿落叶阔叶混交林优势植物小花木荷和亮叶水青冈为例[A];中国植物学会八十五周年学术年会论文摘要汇编(1993-2018)[C];2018年

5 周海超;;秋茄叶片凋落物分解过称单宁的转化及其对N循环的影响[A];中国第五届红树林学术会议论文摘要集[C];2011年

6 梁晓兰;王进闯;王彦杰;李伟;张林;潘开文;;花椒的化感作用对凋落物分解的影响[A];中国第六届植物化感作用学术研讨会论文摘要集[C];2013年

7 崔君至;陈尊贤;;南仁山区土壤性质在不同地形位置之分布[A];中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇)[C];2004年

相关博士学位论文 前10条

1 宋庆妮;毛竹扩张对常绿阔叶林氮磷分配格局与过程的影响[D];清华大学;2017年

2 贾艳艳;氮、钠添加对亚热带森林土壤动物—凋落物分解系统的影响[D];南京大学;2015年

3 吕艳娜;氮、酸沉降对亚热带森林凋落物分解的影响[D];南京大学;2013年

4 蔡岸冬;我国典型陆地生态系统凋落物腐解的时空特征及驱动因素[D];中国农业科学院;2019年

5 吕瑞恒;抚育间伐对针叶人工林凋落物分解的影响[D];北京林业大学;2010年

6 陆晓辉;马尾松凋落物特性及松针分解过程与调控研究[D];贵州大学;2017年

7 陈晓;间伐对油松人工林下真菌植被及凋落物分解的影响[D];北京林业大学;2015年

8 王娟;宝天曼森林凋落物分解与土壤呼吸特征研究[D];北京林业大学;2015年

9 葛晓改;三峡库区马尾松林凋落物分解及对土壤碳库动态的影响研究[D];中国林业科学研究院;2012年

10 陈栎霖;台湾桤木—黑麦草复合模式凋落物分解对模拟氮沉降的初期响应[D];四川农业大学;2014年

相关硕士学位论文 前10条

1 黄天颖;氮素添加对城市森林凋落物早期分解过程的影响[D];上海交通大学;2017年

2 刘旭;氮添加对新疆天山雪岭云杉凋落物分解和林下土壤性质的影响[D];新疆大学;2019年

3 陈新;季节性雪被下新疆天山雪岭云杉林凋落物分解与土壤微生物的关系[D];新疆大学;2019年

4 李海燕;凋落物对过熟马尾松纯林及混交林土壤养分与微生物的影响[D];广西大学;2019年

5 朱保坤;长白山阔叶红松林凋落物的动态变化[D];东北师范大学;2019年

6 徐步云;大针茅与糙隐子草凋落物分解的生物化学特征[D];内蒙古大学;2019年

7 张国龙;大针茅群落物种丰富度和功能多样性对混合凋落物分解特征的影响[D];内蒙古大学;2019年

8 许亚杰;杭州湾湿地凋落物分解过程中线虫群落特征及其对互花米草入侵的响应[D];杭州师范大学;2018年

9 柳鑫;贵州喀斯特地区不同天然草地凋落物养分释放动态研究[D];贵州大学;2018年

10 段斐;亚高山针叶林—溪流—河流集合生态系统的氮磷硫迁移过程[D];四川农业大学;2017年



本文编号:2713018

资料下载
论文发表

本文链接:https://www.wllwen.com/nykjlw/lylw/2713018.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户26250***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com