番茄节间长度的QTL定位
发布时间:2022-02-24 20:49
番茄(Solanum Lycopersicum L.)是世界上最重要的蔬菜之一。番茄植株的结构为营养器官和生殖器官的三维组织,对冠层的光截获和光合作用有着重要的影响,对总产量和收获指数起着极其重要的作用。在番茄驯化过程中,育种工作集中在植物结构的改良,如“理想类型育种”通过提高作物对不同环境的适应性来提高种子/果实产量。株高和节间长度是影响植物结构的主要因素。值得注意的是,绿色革命的伟大成就之一是培育出了矮株型和茎粗壮的品种。在现代育种中,植物结构改良的目的是为了便于管理和采收,合理分配果实和其他部分之间的碳和养分,提高肥料和水份的利用效率。自然变异可以描述为自然群体中单核苷酸(SNP)或小核苷酸片段的插入和缺失(InDel)等,这些变异为检测QTL提供了DNA鉴别平台,通过GWAS和QTL定位的方法进行基因型与表型的关联。因此,了解番茄节间伸长基因的遗传基础不仅有助于阐明番茄驯化和结构的分子机制,也为番茄分子育种提供了理论基础。本研究利用野生型番茄(S.pimpinellifolium)、RIL和F2群体结合GWAS和传统的QTL定位方法对番茄节间长度基因进行了...
【文章来源】:中国农业科学院北京市
【文章页数】:93 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Abbreviations
Chapter 1 GENERNAL INTRODUCTION
1.1 TOMATO CROP
1.2 TOMATO ORIGIN, CLASSIFICATION, DOMESTICATION AND DISTRIBUTION
1.3. ARCHITECTURE
1.4. INTERNODES
1.5. ASPECTS OF TRAITS AFFECTED BY INTERNODE
1.6. MARKER SYSTEMS
1.7. QUANTITATIVE TRAIT LOCI
1.8. THE REQUIREMENTS FOR QTL MAPPING
1.9. MARKER AND QUANTITATIVE TRAIT DATA STRUCTURE
1.10. QTL DETECTION AND MAPPING
1.11. BULKED SEGREGANT ANALYSIS FOR QTL MAPPING
1.12. FACTORS AFFECTING RESULTS FROM QTL MAPPING
1.13. MAPPING POPULATIONS
1.13.1. Criteria for Developing Mapping Population in Linkage-Based Analysis
1.13.2. Populations for Linkage-Based QTL Mapping
1.13.2.1. F_2 Population
1.13.2.2 Backcross Population
1.13.2.3 Doubled Haploids
1.13.2.4 Recombinant Inbred Lines
1.13.2.5. Near-Isogenic Lines
1.13.3 Populations to Exploit Linkage Disequilibrium
1.13.3.1 Association Mapping Population
1.13.3.2 Multi-parent Advanced Generation Inter-cros
1.13.3.4 Population to Exploit Both Linkage and Linkage Disequilibrium
1.13.3.5 Mapping Populations for Cross-Pollinating Species
1.14. TOMATO GENOMICS
1.15. GENOME-WIDE ASSOCIATION STUDIES (GWAS)
1.16. LOW-COVERAGE RESEQUENCING
1.17. OBJECTIVES OF THE STUDY
1.17.1. General Objective
1.17.2. Specific Objectives
CHAPTER 2 GENOME-WIDE ASSOCIATION STUDIES OF INTERNODELENGTH IN S. PIMPINELLIFOLIUM
2.1. INTRODUCTION
2.2 MATERIALS AND METHODS
2.2.1 Plant materials
2.2.2 Experimental design and trait measurements
2.2.3 Sequencing
2.2.4 SNP detection
2.2.5 Genome-wide association analysis
2.3 RESULTS
2.3.1 Phenotypic analysis and population characterization
2.3.2 QTL identification by GWAS approach
2.4 DISCUSSION
2.5. CONCLUSIONS
CHAPTER 3 QTL IDENTIFICATION OF INTERNODE LENGTH IN A TOMATORIL POPULATION DERIVED FROM S. PIMPINELLIFOLIUM
3.1. INTRODUCTION
3.2 Materials and methods
3.2.1 Plant materials
3.2.2 Phenotypic Evaluation
3.2.3 Genotyping
3.2.3.1 Preparation of genomic DNA
3.2.3.2 SNP genotyping
3.2.3.3 Bin construction of the Recombinant
3.2.4 Genome-wide association studies
3.2.5 Statistical analysis
3.3 RESULTS
3.3.1 Variation of internode length in RIL population
3.3.2 QTLs identification for internode length
3.3.3 Candidates analysis of internode length
3.4 DISCUSSION
3.5 CONCLUSION
CHAPTER 4 FINE MAPPING OF MAJOR-EFFECT QTL CONTROLLING THEINTERNODE LENGTH IN (S. LYCOPERSICUM) TOMATO
4.1. INTRODUCTION
4.2 MATERIALS AND METHODS
4.2.1 Plant materials
4.2.2 DNA extraction and genomic analysis
4.2.3 Molecular markers and PCR amplification
4.2.4 Linkage mapping and QTL analysis
4.2.5 Statistical analysis
4.3. RESULTS
4.3.1. Phenotypic data analysis
4.3.2 Frequency distributions of internode length in the segregating generations
4.3.3 Inheritance of internode length
4.3.4 Genetic linkage analysis and QTL identification
4.3.5 Refining the map position of the sil locus
4.3.6 Prediction of candidate genes
4.4. DISCUSSIONS
4.4.1 Internode length Inheritance pattern in tomato
4.4.2 A major QTL for internode length in tomato
4.4.3 Candidate gene for Internode length
4.5. CONCLUSIONS
CHAPTER 5 OVERALL CONCLUSION
REFERENCES
ACKNOWLEDGEMENT
CURRCICULUM VITAE
【参考文献】:
期刊论文
[1]利用永久群体在不同环境下定位黄瓜株高QTL[J]. 苗晗,顾兴芳,张圣平,张忠华,黄三文,王烨. 中国农业科学. 2012(22)
[2]黄瓜遗传图谱构建及株高相关性状的QTL定位[J]. 嵇怡,徐强,缪旻珉,梁国华,高海洁,罗晶晶,陈学好. 园艺学报. 2009(10)
本文编号:3643484
【文章来源】:中国农业科学院北京市
【文章页数】:93 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Abbreviations
Chapter 1 GENERNAL INTRODUCTION
1.1 TOMATO CROP
1.2 TOMATO ORIGIN, CLASSIFICATION, DOMESTICATION AND DISTRIBUTION
1.3. ARCHITECTURE
1.4. INTERNODES
1.5. ASPECTS OF TRAITS AFFECTED BY INTERNODE
1.6. MARKER SYSTEMS
1.7. QUANTITATIVE TRAIT LOCI
1.8. THE REQUIREMENTS FOR QTL MAPPING
1.9. MARKER AND QUANTITATIVE TRAIT DATA STRUCTURE
1.10. QTL DETECTION AND MAPPING
1.11. BULKED SEGREGANT ANALYSIS FOR QTL MAPPING
1.12. FACTORS AFFECTING RESULTS FROM QTL MAPPING
1.13. MAPPING POPULATIONS
1.13.1. Criteria for Developing Mapping Population in Linkage-Based Analysis
1.13.2. Populations for Linkage-Based QTL Mapping
1.13.2.1. F_2 Population
1.13.2.2 Backcross Population
1.13.2.3 Doubled Haploids
1.13.2.4 Recombinant Inbred Lines
1.13.2.5. Near-Isogenic Lines
1.13.3 Populations to Exploit Linkage Disequilibrium
1.13.3.1 Association Mapping Population
1.13.3.2 Multi-parent Advanced Generation Inter-cros
1.13.3.4 Population to Exploit Both Linkage and Linkage Disequilibrium
1.13.3.5 Mapping Populations for Cross-Pollinating Species
1.14. TOMATO GENOMICS
1.15. GENOME-WIDE ASSOCIATION STUDIES (GWAS)
1.16. LOW-COVERAGE RESEQUENCING
1.17. OBJECTIVES OF THE STUDY
1.17.1. General Objective
1.17.2. Specific Objectives
CHAPTER 2 GENOME-WIDE ASSOCIATION STUDIES OF INTERNODELENGTH IN S. PIMPINELLIFOLIUM
2.1. INTRODUCTION
2.2 MATERIALS AND METHODS
2.2.1 Plant materials
2.2.2 Experimental design and trait measurements
2.2.3 Sequencing
2.2.4 SNP detection
2.2.5 Genome-wide association analysis
2.3 RESULTS
2.3.1 Phenotypic analysis and population characterization
2.3.2 QTL identification by GWAS approach
2.4 DISCUSSION
2.5. CONCLUSIONS
CHAPTER 3 QTL IDENTIFICATION OF INTERNODE LENGTH IN A TOMATORIL POPULATION DERIVED FROM S. PIMPINELLIFOLIUM
3.1. INTRODUCTION
3.2 Materials and methods
3.2.1 Plant materials
3.2.2 Phenotypic Evaluation
3.2.3 Genotyping
3.2.3.1 Preparation of genomic DNA
3.2.3.2 SNP genotyping
3.2.3.3 Bin construction of the Recombinant
3.2.4 Genome-wide association studies
3.2.5 Statistical analysis
3.3 RESULTS
3.3.1 Variation of internode length in RIL population
3.3.2 QTLs identification for internode length
3.3.3 Candidates analysis of internode length
3.4 DISCUSSION
3.5 CONCLUSION
CHAPTER 4 FINE MAPPING OF MAJOR-EFFECT QTL CONTROLLING THEINTERNODE LENGTH IN (S. LYCOPERSICUM) TOMATO
4.1. INTRODUCTION
4.2 MATERIALS AND METHODS
4.2.1 Plant materials
4.2.2 DNA extraction and genomic analysis
4.2.3 Molecular markers and PCR amplification
4.2.4 Linkage mapping and QTL analysis
4.2.5 Statistical analysis
4.3. RESULTS
4.3.1. Phenotypic data analysis
4.3.2 Frequency distributions of internode length in the segregating generations
4.3.3 Inheritance of internode length
4.3.4 Genetic linkage analysis and QTL identification
4.3.5 Refining the map position of the sil locus
4.3.6 Prediction of candidate genes
4.4. DISCUSSIONS
4.4.1 Internode length Inheritance pattern in tomato
4.4.2 A major QTL for internode length in tomato
4.4.3 Candidate gene for Internode length
4.5. CONCLUSIONS
CHAPTER 5 OVERALL CONCLUSION
REFERENCES
ACKNOWLEDGEMENT
CURRCICULUM VITAE
【参考文献】:
期刊论文
[1]利用永久群体在不同环境下定位黄瓜株高QTL[J]. 苗晗,顾兴芳,张圣平,张忠华,黄三文,王烨. 中国农业科学. 2012(22)
[2]黄瓜遗传图谱构建及株高相关性状的QTL定位[J]. 嵇怡,徐强,缪旻珉,梁国华,高海洁,罗晶晶,陈学好. 园艺学报. 2009(10)
本文编号:3643484
本文链接:https://www.wllwen.com/nykjlw/yylw/3643484.html