基于SSR与cpDNA标记的中国西部梨与欧洲梨的遗传差异与分化路线的研究
发布时间:2020-11-21 19:54
梨(Pyrus.L)属于蔷薇科植物,在中国从寒冷地区到热带地区,从西部高原到东部沿海均有种植。中国是东方梨的主要起源中心,且种质资源丰富。在梨的传播过程中,形成三个多样性中心,即中国中心,中亚中心和近东中心。SSR标记在梨中具有高度多态性和共显性遗传,可以用于评估遗传多样性,阐述遗传关系与进化路线。由于微卫星在梨属甚至整个蔷薇科家族中具有多态性丰富,可重复的共显性遗传与可转移性,被证实是可用的遗传标记并且具有等位基因可变特性等优异特点。SSR标记和叶绿体分子标记分别来自核基因组和叶绿体基因组,它们可以相互补充并且更全面的阐述某一现象。本研究使用131份梨资源(66份西洋梨,33份新疆梨,4份秋子梨,15份白梨,2份褐梨,2份杏叶梨,4份木梨,1份沙梨,吉尔吉斯斯坦的Kai-4,Kai-9及塔吉克斯坦的Pu-0234和Pu-0234),应用17对SSR引物和5对叶绿体DNA引物用于评价中国西部和欧洲梨种质的遗传多样性,阐述中国西部梨种质与欧洲梨种质的系统发育关系及揭示分化路线。所有SSR标记均具有多态性,在131个种质中共获得377个等位基因。通过多样性统计发现中国梨种质的遗传多样性高于西洋梨种质(中国西部梨种质的Ho和He分别为0.65和0.84,而西洋梨种质为0.57和0.73)。通过聚类分析发现东方梨种质具有遗传相关性。PCoA分析显示除了杏叶梨和木梨-3相近于西方梨种质,两个地理群体之间的种质存在巨大的差异。通过群体结构分析也表明了大多数东方与西方种质资源具有巨大差异,除了乞力阿木特,夏脆,长把,八角梨,奎克阿木特,油饺团,杏叶梨及木梨-3与西洋梨亲缘关系较近,这些结果与PCoA分析一致。通过Custer和PCoA分析,把所有种质分成两个种群是最佳选择,且所有中国梨种质的遗传关系均相近。使用5对cpDNA通用引物对中国和欧洲梨种质的遗传多样性进行评价。trnL-trnF-1,trnL-trnF-2,trnS-psbC,rbcL和accD-psaI的单倍型数目分别为三种,七种,四种,三种和十种单倍型。Hd(0.7348)值在accD-psaI高变区中最大。Vh和Sh的最大值均在accD-psaI中检测到(Vh=0.00236,Sh=0.049),而最小值均在rbcL检测到(Vh=0.00044,Sh=0.021)。Tajima’s D值的最小值在accD-psaI(-0.14472)中检测到而最大值在rbcL(2.82532)检测到。多态性分离数为10,单倍型多样性为0.8333,K平均数为14.000,最大核苷酸多样性为0.00302。除多态性分离数外,东方梨种质中所有指标的最高值均高于西方梨种质。通过分析高变区和基因间隔在9个物种中共检测到15个单倍型。中国梨种质资源检测到H-2至H-15单倍型,西方种质中检测到H-1至H-6单倍型。未知种质与西洋梨种质中未检测到H-7至H-15单倍型,且所有东方种质中未发现H-1单倍型。通过对资源单倍型的地理分布进行分析,国外梨种质资源具有H-1,H-5和H-6单倍型,新疆梨、白梨、属于PO群体的Kréd Sobieshi与Menie资源具有H-2单倍型,H-3单倍型主要存在与国外梨种质中,而东方梨种质具有的单倍型几乎在新疆梨中检测不到,表明西洋梨与新疆梨种质显示出相近的遗传关系,H-2和H-4分别从新疆到波兰与新疆到保加利亚的途中发生了基因导入,H-3是从吉尔吉斯斯坦到新疆途中发生了基因导入,新疆可能是东西方梨资源进化的重要地方点,基因渗透可能发生在此条线路上。
【学位单位】:中国农业科学院
【学位级别】:博士
【学位年份】:2019
【中图分类】:S661.2
【文章目录】:
摘要
ABSTRACT
ABBREVIATIONS
CHAPTER Ⅰ INTRODUCTION
1.1 GENERAL INFORMATION OF PEAR
1.1.1Brief history of Pyrus
1.1.2 Origin and distribution
1.2.GENETIC DIVERSITY AMONG DIFFERENT TRAITS OF PEAR
1.2.1 Tree Characters
1.2.2 Leaf characters
1.2.3 Flowering characters
1.2.4 Fruit characters
1.2.5 Quality characters
1.3 NUTRITIONAL IMPORTANCE
1.3.1 Composition
1.3.2 Nutritional value and health benefits of pear fruit
1.4 BIODIVERSITY AND PLANT GENETIC RESOURCES
1.4.1 Degree of genetic uniformity/variability in Pyrus
1.4.2 Preservation of germplasm
1.4.3 In vivo conservation
1.4.4 In vitro preservation
1.5 SIMPLE SEQUENCE REPEAT(SSR)MARKER
1.5.1 History
1.5.2 Identification and genetic diversity of SSR marker
1.5.3 Application of SSR marker on origin evolution and kinship identification
1.5.4 Application of SSR marker on gene mapping and genetic map construction
1.5.5 Application of SSR marker on fingerprint and molecular identity card construction
1.5.6 Development of SSR molecular markers on the genome of Prunus
1.6 CHLOROPLAST DNA MARKER
1.6.1 History
1.6.2 Characteristics of Chloroplast DNA
1.6.3 Research status of chloroplast DNA on plants
1.6.4 Research status of chloroplast DNA on fruit trees
1.6.5 Research status of chloroplast DNA in pear germplasm resources
1.7 PURPOSE AND SIGNIFICANCE OF THE STUDY
1.8 OBJECTIVES OF THE PROPOSED STUDY
CHAPTER Ⅱ GENETIC DIVERSITY AND ANALYSIS OF PEAR GERMPLASM RESOURCES USING SSR MARKER
2.1 INTRODUCTION
2.2.MATERIALS AND METHODS
2.2.1 Experimental materials
2.2.2 Test agents and instruments
2.2.3 Experimental main instrument
2.2.4 Isolation of pear DNA in the previous research
2.2.5 Pear genomic DNA extraction in existence study
2.2.6 Identification of genomic DNA
2.2.7 Genomic DNA concentration adjustment
2.2.8 SSR primer screening
2.2.9 Characterization of PCR amplification
2.2.10 SSR primer pairings and PCR amplification
2.2.11 Electrophoresis of amplified DNA
2.2.12 Preparation of polyacrylamide gel
2.2.13 Electrophoresis
2.2.14 Silver Dye
2.2.15 Purification of PCR products
2.2.16 Purification product electrophoresis
2.2.17 Data analysis of simple sequence repeat markers
2.3 RESULTS
2.3.1 Genetic diversity assessment by SSR markers
2.3.2 Principal coordinate analysis of131 pear germplasms
2.4 DISCUSSIONS
2.4.1 Characteristics of genetic evaluation by SSR
2.4.2 Genetic relationship of pear accessions inferred by PCoA analysis
CHAPTER Ⅲ PHYLOGENETIC RELATIONSHIP AND POPULATION STRUCTURE ANALYSIS OF PEAR GERMPLASM RESOURCES USING SSR MARKER
3.1 INTRODUCTION
3.2 MATERIALS AND METHODS
3.2.1 Plant materials
3.2.2 Statistical analysis method
3.3 RESULTS
3.3.1 Cluster analysis of131 pear germplasms by SSR markers
3.3.2 Population Structure of131 Pear Germplasms
3.4 DISCUSSIONS
3.4.1 Genetic relationship of pear accessions by the cluster analysis
3.4.2 Genetic structure and genetic diversity of pear accessions
CHAPTER Ⅳ GENETIC DIVERSITY AND DIFFERENTIATION RELATIONSHIP ANALYSIS OF PEAR GERMPLASM RESOURCES USING CHLOROPLAST DNA MARKER
4.1 INTRODUCTION
4.2 MATERIAL METHOD
4.2.1 Plant material
4.2.2 Determination and screening of universal primers for chloroplast DNA for PCR amplification
4.2.3 Chloroplast DNA selected screened markers
4.2.4 Chloroplast DNA fragments amplification and sequencing
4.2.5 Data analysis of chloroplast DNA regions
4.3 RESULTS
4.3.1 Genetic diversity and haplotypes information of chloroplast DNA
4.3.2 Conservation of cpDNA haplotype by one large deletion
4.3.3 Geographical distribution of chloroplast DNA haplotypes
4.3.4 Median-Joining network for chloroplast DNA
4.4 DISCUSSIONS
4.4.1 Genetic diversity and haplotype information of chloroplast DNA
4.4.2 Construction of an intermediate network map between haplotypes
CHAPTER Ⅴ FULL-TEXT CONCLUSION
REFERENCES
ACKNOWLEDGEMENT
CURRICULUM VITAE
【参考文献】
本文编号:2893519
【学位单位】:中国农业科学院
【学位级别】:博士
【学位年份】:2019
【中图分类】:S661.2
【文章目录】:
摘要
ABSTRACT
ABBREVIATIONS
CHAPTER Ⅰ INTRODUCTION
1.1 GENERAL INFORMATION OF PEAR
1.1.1Brief history of Pyrus
1.1.2 Origin and distribution
1.2.GENETIC DIVERSITY AMONG DIFFERENT TRAITS OF PEAR
1.2.1 Tree Characters
1.2.2 Leaf characters
1.2.3 Flowering characters
1.2.4 Fruit characters
1.2.5 Quality characters
1.3 NUTRITIONAL IMPORTANCE
1.3.1 Composition
1.3.2 Nutritional value and health benefits of pear fruit
1.4 BIODIVERSITY AND PLANT GENETIC RESOURCES
1.4.1 Degree of genetic uniformity/variability in Pyrus
1.4.2 Preservation of germplasm
1.4.3 In vivo conservation
1.4.4 In vitro preservation
1.5 SIMPLE SEQUENCE REPEAT(SSR)MARKER
1.5.1 History
1.5.2 Identification and genetic diversity of SSR marker
1.5.3 Application of SSR marker on origin evolution and kinship identification
1.5.4 Application of SSR marker on gene mapping and genetic map construction
1.5.5 Application of SSR marker on fingerprint and molecular identity card construction
1.5.6 Development of SSR molecular markers on the genome of Prunus
1.6 CHLOROPLAST DNA MARKER
1.6.1 History
1.6.2 Characteristics of Chloroplast DNA
1.6.3 Research status of chloroplast DNA on plants
1.6.4 Research status of chloroplast DNA on fruit trees
1.6.5 Research status of chloroplast DNA in pear germplasm resources
1.7 PURPOSE AND SIGNIFICANCE OF THE STUDY
1.8 OBJECTIVES OF THE PROPOSED STUDY
CHAPTER Ⅱ GENETIC DIVERSITY AND ANALYSIS OF PEAR GERMPLASM RESOURCES USING SSR MARKER
2.1 INTRODUCTION
2.2.MATERIALS AND METHODS
2.2.1 Experimental materials
2.2.2 Test agents and instruments
2.2.3 Experimental main instrument
2.2.4 Isolation of pear DNA in the previous research
2.2.5 Pear genomic DNA extraction in existence study
2.2.6 Identification of genomic DNA
2.2.7 Genomic DNA concentration adjustment
2.2.8 SSR primer screening
2.2.9 Characterization of PCR amplification
2.2.10 SSR primer pairings and PCR amplification
2.2.11 Electrophoresis of amplified DNA
2.2.12 Preparation of polyacrylamide gel
2.2.13 Electrophoresis
2.2.14 Silver Dye
2.2.15 Purification of PCR products
2.2.16 Purification product electrophoresis
2.2.17 Data analysis of simple sequence repeat markers
2.3 RESULTS
2.3.1 Genetic diversity assessment by SSR markers
2.3.2 Principal coordinate analysis of131 pear germplasms
2.4 DISCUSSIONS
2.4.1 Characteristics of genetic evaluation by SSR
2.4.2 Genetic relationship of pear accessions inferred by PCoA analysis
CHAPTER Ⅲ PHYLOGENETIC RELATIONSHIP AND POPULATION STRUCTURE ANALYSIS OF PEAR GERMPLASM RESOURCES USING SSR MARKER
3.1 INTRODUCTION
3.2 MATERIALS AND METHODS
3.2.1 Plant materials
3.2.2 Statistical analysis method
3.3 RESULTS
3.3.1 Cluster analysis of131 pear germplasms by SSR markers
3.3.2 Population Structure of131 Pear Germplasms
3.4 DISCUSSIONS
3.4.1 Genetic relationship of pear accessions by the cluster analysis
3.4.2 Genetic structure and genetic diversity of pear accessions
CHAPTER Ⅳ GENETIC DIVERSITY AND DIFFERENTIATION RELATIONSHIP ANALYSIS OF PEAR GERMPLASM RESOURCES USING CHLOROPLAST DNA MARKER
4.1 INTRODUCTION
4.2 MATERIAL METHOD
4.2.1 Plant material
4.2.2 Determination and screening of universal primers for chloroplast DNA for PCR amplification
4.2.3 Chloroplast DNA selected screened markers
4.2.4 Chloroplast DNA fragments amplification and sequencing
4.2.5 Data analysis of chloroplast DNA regions
4.3 RESULTS
4.3.1 Genetic diversity and haplotypes information of chloroplast DNA
4.3.2 Conservation of cpDNA haplotype by one large deletion
4.3.3 Geographical distribution of chloroplast DNA haplotypes
4.3.4 Median-Joining network for chloroplast DNA
4.4 DISCUSSIONS
4.4.1 Genetic diversity and haplotype information of chloroplast DNA
4.4.2 Construction of an intermediate network map between haplotypes
CHAPTER Ⅴ FULL-TEXT CONCLUSION
REFERENCES
ACKNOWLEDGEMENT
CURRICULUM VITAE
【参考文献】
相关期刊论文 前1条
1 胡春云;郑小艳;滕元文;;梨属叶绿体非编码区trnL-trnF和accD-psaI特征及其在系统发育研究中的应用价值[J];园艺学报;2011年12期
本文编号:2893519
本文链接:https://www.wllwen.com/nykjlw/yylw/2893519.html