Metabolic Engineering of Health Alternatives and High Yield
发布时间:2024-03-02 03:57
植物是人类食物的最终来源。为了得到更高产量和更好的品质,人们深入研究了植物多种重要的性状,包括对生物/非生物胁迫的抗性、产量组成、大量及微量营养和储存期,单个性状或多种形状的组合情况。通常情况下,最成功的作法基于对控制性状的生物学过程的关键酶和/或转录因子的操作。尽管人们为揭示这些生物学过程已经取得了重要的进展,但是与这些过程明显无关的性状是如何协调调节的却仍然知之甚少。本研究中我们鉴定了番茄中的一个类MIXTA的MYB家族基因SIMX1。该基因可以同时调节能够决定以上性状的发育、生理和代谢过程,有可能正是通过对这些过程中的关键酶的转录调节而实现的。过表达SIMX1基因可以增强番茄对广谱的生物学/非生物学胁迫的抗性。该研究为作物育种领域提供了一个通过操作单个调节基因而得到多个理想性状的实例。
【文章页数】:103 页
【学位级别】:博士
【文章目录】:
ABSTRACT
中文摘要
ABBREVATIONS
1 REVIEW OF LITERATURE
1.1 Brief History of Tomato
1.2 Abiotic Stress
1.2.1 Drought
1.2.2 Salinity
1.3 Biotic Stresses
1.4 Tomato Structure
1.4.1 Trichome Formation
1.4.2 Cutin and Wax Biosynthesis
1.5 Tomato secondary metabolism
1.5.1 Terpenoids
1.5.2 Flavonoids
1.5.3 Carotenoids
1.6 RNA Sequencing
1.7 MYB and MIXTA genes
2 MATERIALS and METHODS
2.1 Plant Material
2.2 Bioinformatics analysis
2.3 Vectors construction and plant transformation and regeneration
2.4 Molecular analysis of transgenic plants
2.4.1 DNA Extraction
2.4.2 Transgenic Analysis
2.4.3 Transcript Test
2.4.4 Expression Analyses
2.5 Bimolecular Assays
2.5.1 Yeast One-Hybrid Assay
2.5.2 Yeast Two- Hybrid Assay
2.5.3 Bimolecular Fluorescence Complementation Assay
2.6 RNA Seq and Bioinformatics analysis
2.7 Electron, confocal and Light Microscopy
2.8 Abiotic and biotic Stress Tolerance Assays
2.8.1 Analysis of Drought and Salt Tolerance
2.8.2 Stomatal conductance and aperture measurement
2.8.3 Biotic Stress Tolerance Assays
2.9 Extraction and Measurement of Secondary Metabolites
2.9.1 Extraction and Measurement of Terpenoids
2.9.2 Extraction and Measurement of Flavonoids
2.9.3 Extraction and measurement of carotenoids
2.10 Fruit Quality measurements
2.10.1 Ethylene measurement
2.10.2 Fruit Firmness
2.10.3 Shelf Life
2.10.4 Yield and Yield Component
3 RESULTS
3.1 Characterization of Sl MX1
3.2. Cloning of Sl MX1, Transgenic Analysis and Transcript Test
3.3 Expression profile of Sl MX1 in different organs
3.4 Sub-cellular Localization of Sl MX1 Protein
3.5 Phenotypic characterization of Sl MX1 transgenic lines
3.5.1 Sl MX1 positively regulates trichome formation in tomato
3.5.2 Sl MX1 positively regulates fruit color in tomato
3.5.3 Sl MX1 positively regulates cuticle formation and cutin deposition in tomato
3.5.4 Sl MX1 positively regulates fruit size and tomato yield
3.6 Sl MX1 positively regulates drought and salt resistant
3.7 Sl MX1 positively regulates resistant to biotic stresses
3.7.1 Sl MX1 enhanced resistant to insects
3.7.2 Sl MX1 enhanced resistant to bacteria
3.7.3 Sl MX1 enhanced resistant to fungi
3.7.4 Sl MX1 enhanced resistant to virus
3.8 Sl MX1 enhanced fruit quality and shelf life
3.9 Sl MX1 positively enhanced secondary metabolism in tomato
3.9.1 Sl MX1 positively regulates terpenoid synthesis in tomato
3.9.2 Sl MX1 positively regulates flavonoid synthesis in tomato
3.9.3 Sl MX1 positively regulates carotenoid synthesis in tomato
3.10 RNA Sequencing indicated the positive roles of Sl MX1 in tomato development and metabolism
3.11 Sl MXl affects the expression of regulatory genes in trichome and cuticle formation
3.12 Sl MXl affects the expression of key genes in abiotic stress resistance
3.13 Sl MXl affects the expression of key genes in biotic stress resistance
3.14 Sl MXl affects the expression of TPS9 a key gene in terpenoid biosynthesis
3.15 Sl MXl affects the expression of key genes in carotenoid biosynthesis
3.16 Interaction between Sl MX1 and target genes
3.17 Interaction between Sl MX1 and Wo
4 DISCUSSION
4.1 Sl MX1 is a MYB family gene that regulates cuticle development
4.2 Sl MX1 putatively target Sl Cyc B2 that is crucial for tomato trichome formation
4.3 Sl MX1 may affect tomato fruit surface formation by regulating the Sl SHNs genes
4.4 Sl MX1 positively regulates drought and salt tolerance
4.5 Over expressing Sl MX1 enhanced biotic stress resistance
4.6 Sl MX1 positively prolonged fruit shelf life and improve tomato yield
4.7 Over-expression of Sl MX1 is a potentially useful strategy to increase the fruit yield, quality and stress resistance
4.8 Conclusion
4.9 Future Perspective
5 REFERENCES
Brief history of Author
Publication
ACKNOWLEDGEMENT
本文编号:3916296
【文章页数】:103 页
【学位级别】:博士
【文章目录】:
ABSTRACT
中文摘要
ABBREVATIONS
1 REVIEW OF LITERATURE
1.1 Brief History of Tomato
1.2 Abiotic Stress
1.2.1 Drought
1.2.2 Salinity
1.3 Biotic Stresses
1.4 Tomato Structure
1.4.1 Trichome Formation
1.4.2 Cutin and Wax Biosynthesis
1.5 Tomato secondary metabolism
1.5.1 Terpenoids
1.5.2 Flavonoids
1.5.3 Carotenoids
1.6 RNA Sequencing
1.7 MYB and MIXTA genes
2 MATERIALS and METHODS
2.1 Plant Material
2.2 Bioinformatics analysis
2.3 Vectors construction and plant transformation and regeneration
2.4 Molecular analysis of transgenic plants
2.4.1 DNA Extraction
2.4.2 Transgenic Analysis
2.4.3 Transcript Test
2.4.4 Expression Analyses
2.5 Bimolecular Assays
2.5.1 Yeast One-Hybrid Assay
2.5.2 Yeast Two- Hybrid Assay
2.5.3 Bimolecular Fluorescence Complementation Assay
2.6 RNA Seq and Bioinformatics analysis
2.7 Electron, confocal and Light Microscopy
2.8 Abiotic and biotic Stress Tolerance Assays
2.8.1 Analysis of Drought and Salt Tolerance
2.8.2 Stomatal conductance and aperture measurement
2.8.3 Biotic Stress Tolerance Assays
2.9 Extraction and Measurement of Secondary Metabolites
2.9.1 Extraction and Measurement of Terpenoids
2.9.2 Extraction and Measurement of Flavonoids
2.9.3 Extraction and measurement of carotenoids
2.10 Fruit Quality measurements
2.10.1 Ethylene measurement
2.10.2 Fruit Firmness
2.10.3 Shelf Life
2.10.4 Yield and Yield Component
3 RESULTS
3.1 Characterization of Sl MX1
3.2. Cloning of Sl MX1, Transgenic Analysis and Transcript Test
3.3 Expression profile of Sl MX1 in different organs
3.4 Sub-cellular Localization of Sl MX1 Protein
3.5 Phenotypic characterization of Sl MX1 transgenic lines
3.5.1 Sl MX1 positively regulates trichome formation in tomato
3.5.2 Sl MX1 positively regulates fruit color in tomato
3.5.3 Sl MX1 positively regulates cuticle formation and cutin deposition in tomato
3.5.4 Sl MX1 positively regulates fruit size and tomato yield
3.6 Sl MX1 positively regulates drought and salt resistant
3.7 Sl MX1 positively regulates resistant to biotic stresses
3.7.1 Sl MX1 enhanced resistant to insects
3.7.2 Sl MX1 enhanced resistant to bacteria
3.7.3 Sl MX1 enhanced resistant to fungi
3.7.4 Sl MX1 enhanced resistant to virus
3.8 Sl MX1 enhanced fruit quality and shelf life
3.9 Sl MX1 positively enhanced secondary metabolism in tomato
3.9.1 Sl MX1 positively regulates terpenoid synthesis in tomato
3.9.2 Sl MX1 positively regulates flavonoid synthesis in tomato
3.9.3 Sl MX1 positively regulates carotenoid synthesis in tomato
3.10 RNA Sequencing indicated the positive roles of Sl MX1 in tomato development and metabolism
3.11 Sl MXl affects the expression of regulatory genes in trichome and cuticle formation
3.12 Sl MXl affects the expression of key genes in abiotic stress resistance
3.13 Sl MXl affects the expression of key genes in biotic stress resistance
3.14 Sl MXl affects the expression of TPS9 a key gene in terpenoid biosynthesis
3.15 Sl MXl affects the expression of key genes in carotenoid biosynthesis
3.16 Interaction between Sl MX1 and target genes
3.17 Interaction between Sl MX1 and Wo
4 DISCUSSION
4.1 Sl MX1 is a MYB family gene that regulates cuticle development
4.2 Sl MX1 putatively target Sl Cyc B2 that is crucial for tomato trichome formation
4.3 Sl MX1 may affect tomato fruit surface formation by regulating the Sl SHNs genes
4.4 Sl MX1 positively regulates drought and salt tolerance
4.5 Over expressing Sl MX1 enhanced biotic stress resistance
4.6 Sl MX1 positively prolonged fruit shelf life and improve tomato yield
4.7 Over-expression of Sl MX1 is a potentially useful strategy to increase the fruit yield, quality and stress resistance
4.8 Conclusion
4.9 Future Perspective
5 REFERENCES
Brief history of Author
Publication
ACKNOWLEDGEMENT
本文编号:3916296
本文链接:https://www.wllwen.com/nykjlw/yylw/3916296.html