核燃料棒束的传热强化
发布时间:2022-01-14 06:48
纳米流体是纳米颗粒在传统流体介质中的悬浮液。纳米流体由于其异常高的热导率,在强化传热方面具有广阔的应用前景。目前,文献中纳米流体导热系数数据存在较大差异。相比之下,纳米流体受到的关注非常有限,刚开始引起人们的注意,此外对纳米流体的导热性增强机制尚未完全理解。因此,反应堆的设计者可能会忽略纳米流体对反应堆堆芯传热影响的数据。基于以上原因,本文通过对纳米流体的模拟来提高核燃料棒束与冷却剂之间的传热。本文第一部分,是对纳米流体的导热性能进行较为详细的文献综述。第二部分通过研究水作为冷却剂与不同体积分数的纳米流体之间的传热,以此探究单相纳米流体在核燃料棒束中的传热特性。为了强化换热,通过使用体积分数为0.5%和2%的A12O3纳米流体,运用ANSYS-FLUENT软件对单根NFR燃料棒束进行了建模和仿真。结果发现在相同的流速下,体积分数为2%的纳米流体具有更高的传热系数,而水的传热效率最低,此外还发现传热系数随着雷诺数(Re)的增加而增大。结果表明,纳米流体比水具有更好的换热特性。
【文章来源】:华北电力大学(北京)北京市 211工程院校 教育部直属院校
【文章页数】:62 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Heat Transfer Mechanisms
1.2.1 Conduction
1.2.2 Radiation
1.2.3 Convection
1.2.4 Classification Of Enhancement Techniques
1.3 Heat Transfer Enhancement In Annular Spaces And Structure
1.4 Nanofluids
1.4.1 Development Of The Concept of Nano Fluids
1.4.2 Importance Of Nanosize
1.4.3 Preparation Of Nanofluids
1.4.4 Advantages Of Nano-Fluids
1.5 Statement Of Objectives
1.6 Thesis Structure
Chapter 2 Literature Review
2.1 Thermal Conductivity Of Nanofluids
2.1.1 Thermal Conductivity Measurement Methods
2.1.2 Parameters Effects On Thermal Conductivity Of Nanfluids
Chapter 3 Methodology
3.1 Computational Fluid Dynamics Code
3.1.1 Introduction
3.1.2 Capability Of Computational Fluid Dynamics
3.2 Single Heater Element Loop Tester
3.3 Theoretical Formulas
Chapter 4 Cfd Simulation
4.1 Governing Equations
4.2 The Geometry
4.3 Mesh Details
4.4 Boundary Conditions
4.5 Numerical Model Validation
Chapter 5 Results And Discussion
5.1 Comparison Of Heat Transfer Co-Efficient For Different Coolant
5.2 Variation Of Nusselt Number As A Function Of Reynolds Number
5.3 Comparison of Thermo-Fluid Dynamic Parameters
Conclusions
References
Papers Published During The Master's Degree
Acknowledgements
本文编号:3588025
【文章来源】:华北电力大学(北京)北京市 211工程院校 教育部直属院校
【文章页数】:62 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Heat Transfer Mechanisms
1.2.1 Conduction
1.2.2 Radiation
1.2.3 Convection
1.2.4 Classification Of Enhancement Techniques
1.3 Heat Transfer Enhancement In Annular Spaces And Structure
1.4 Nanofluids
1.4.1 Development Of The Concept of Nano Fluids
1.4.2 Importance Of Nanosize
1.4.3 Preparation Of Nanofluids
1.4.4 Advantages Of Nano-Fluids
1.5 Statement Of Objectives
1.6 Thesis Structure
Chapter 2 Literature Review
2.1 Thermal Conductivity Of Nanofluids
2.1.1 Thermal Conductivity Measurement Methods
2.1.2 Parameters Effects On Thermal Conductivity Of Nanfluids
Chapter 3 Methodology
3.1 Computational Fluid Dynamics Code
3.1.1 Introduction
3.1.2 Capability Of Computational Fluid Dynamics
3.2 Single Heater Element Loop Tester
3.3 Theoretical Formulas
Chapter 4 Cfd Simulation
4.1 Governing Equations
4.2 The Geometry
4.3 Mesh Details
4.4 Boundary Conditions
4.5 Numerical Model Validation
Chapter 5 Results And Discussion
5.1 Comparison Of Heat Transfer Co-Efficient For Different Coolant
5.2 Variation Of Nusselt Number As A Function Of Reynolds Number
5.3 Comparison of Thermo-Fluid Dynamic Parameters
Conclusions
References
Papers Published During The Master's Degree
Acknowledgements
本文编号:3588025
本文链接:https://www.wllwen.com/projectlw/hkxlw/3588025.html