针对泰勒涡在核主泵应用中的现象研究
发布时间:2023-02-20 19:10
核主泵(PLR泵)是核反应系统中重要的组成部分之一。其工作原理是在高压条件下驱动制冷剂循环流动,从而带走核反应堆产生的热量。为实现核主泵的密封功能,低温清洗流从泵上端灌入。流体在由泵轴和泵壳所形成的环形间隙中会产生多种不同形态的泰勒涡(亦称泰勒科特流)。由于循环热流与清洗冷流之间存在高温差(近200摄氏度),泰勒科特流会造成温度波动并在长时间工作下产生热疲劳,最终在轴和壳的表面形成裂缝。 本论文通过数值模拟研究温差以及轴的旋转速度对泰勒科特流具体结构的影响。使用的数值模拟求解器的可靠性通过与现有实验数据的比对得到了可靠验证。通过对流体结构的具体模拟分析,本论文主要阐述了以下新的物理理解及发现:核主泵工况下,流体的圆周波速在保持计算域结构不变的基础上为常值。因为大温差的存在,靠近环形间隙与热流体腔室连接处的泰勒涡会被明显拉伸。由于浮力效应,一股热流向上涌入环形间隙并贴近轴面,阻碍了泰勒涡的向下移动和轴向振动。加大温差和提高转速均能够导致流体(温度)振动频率和圆周波数。模拟所预测的轴向最大温度波动位置与现有实验结果有很好的吻合。本项目对核主泵中泰勒科特流的物理性质作了深入分析。所获的结论有...
【文章页数】:89 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
1 INTRODUCTION
1.1 Thermal Fatigue Problems on PLR Pump
1.1.1 Introduction of the PLR Pump
1.1.2 Crack Issues in the PLR Pump
1.1.3 Early Studies on Thermal Fatigue Problems
1.2 Typical States of Taylor-Couette Flow
1.2.1 Circular Couette Flow
1.2.2 Taylor-Couette Flow
1.2.3 Wavy Taylor-Couette Flow
1.2.4 Taylor-Couette Flow with Higher Taylor Number
1.2.5 Taylor-Couette-Poiseuille Flow
1.2.6 Thermal Effect on Taylor-Couette Flow
1.3 Research Objectives and Thesis Organization
2 COMPUTATIONAL DETAILS
2.1 CFD Solver
2.2 Boundary Conditions
2.3 Verification for Laminar Flow Model
2.4 Computational Domains
2.4.1 Simplified Domain Applied in CFD Validation
2.4.2 Real PLR Pump Simulation
2.5 Mesh Independence Study
3 CFD VALIDATION
3.1 Taylor-Couette Flow
3.2 Wavy Taylor-Couette Flow
3.3 Taylor-Couette Flow with Temperature Gradient
4 RESULTS AND DISCUSSION
4.1 Influence of Temperature Difference
4.1.1 Cross-correlation Between Velocity and Temperature
4.1.2 Results with Uniform Temperature Field
4.1.3 Effect of Temperature Difference on PLR Pump Flow
4.1.4 Further Analysis on Structures and Behaviors of PLR Pump Flow
4.2 Influence of Rotating Speed
5 CONCLUSIONS AND FUTURE WORKS
5.1 Conclusions
5.2 Recommendations for Future Simulation and Design Optimizations
ACKNOWLEDGMENTS
Appendix A
Appendix B
Appendix C
Appendix D
Bibliography
本文编号:3747153
【文章页数】:89 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
1 INTRODUCTION
1.1 Thermal Fatigue Problems on PLR Pump
1.1.1 Introduction of the PLR Pump
1.1.2 Crack Issues in the PLR Pump
1.1.3 Early Studies on Thermal Fatigue Problems
1.2 Typical States of Taylor-Couette Flow
1.2.1 Circular Couette Flow
1.2.2 Taylor-Couette Flow
1.2.3 Wavy Taylor-Couette Flow
1.2.4 Taylor-Couette Flow with Higher Taylor Number
1.2.5 Taylor-Couette-Poiseuille Flow
1.2.6 Thermal Effect on Taylor-Couette Flow
1.3 Research Objectives and Thesis Organization
2 COMPUTATIONAL DETAILS
2.1 CFD Solver
2.2 Boundary Conditions
2.3 Verification for Laminar Flow Model
2.4 Computational Domains
2.4.1 Simplified Domain Applied in CFD Validation
2.4.2 Real PLR Pump Simulation
2.5 Mesh Independence Study
3 CFD VALIDATION
3.1 Taylor-Couette Flow
3.2 Wavy Taylor-Couette Flow
3.3 Taylor-Couette Flow with Temperature Gradient
4 RESULTS AND DISCUSSION
4.1 Influence of Temperature Difference
4.1.1 Cross-correlation Between Velocity and Temperature
4.1.2 Results with Uniform Temperature Field
4.1.3 Effect of Temperature Difference on PLR Pump Flow
4.1.4 Further Analysis on Structures and Behaviors of PLR Pump Flow
4.2 Influence of Rotating Speed
5 CONCLUSIONS AND FUTURE WORKS
5.1 Conclusions
5.2 Recommendations for Future Simulation and Design Optimizations
ACKNOWLEDGMENTS
Appendix A
Appendix B
Appendix C
Appendix D
Bibliography
本文编号:3747153
本文链接:https://www.wllwen.com/projectlw/hkxlw/3747153.html