大豆蛋白水解产物对冰淇淋和稀奶油结构及性质的影响
发布时间:2021-03-06 06:43
大豆分离蛋白作为一种植物源蛋白,由于具有有益健康、成本低、来源丰富以及功能性等特点,因此,近年来在食品工业中受到广泛关注。大豆蛋白被认为可以替代食品体系中如冰淇淋和鲜奶油中的牛奶蛋白。大豆蛋白主要由两部分组成:大豆球蛋白(11s)和伴大豆球蛋白(7s),二者总量占大豆种子贮藏蛋白的70%。11S是由酸性亚基和碱性亚基通过二硫键组成的六聚体,分子量为300-380 kDa。7S是α亚基(67 kDa),1个αˊ(71 kDa)和β(50 kDa)通过疏水作用和氢键形成的三聚体。加工条件及亚基比例对大豆蛋白乳化性能存在一定影响。天然大豆分离蛋白由于分子量较大,结构完整,油水界面扩散速度较慢,分子柔性较差,所以表现出较差的油水界面性能。而在工业大豆分离蛋白(CSPI)生产过程中,热处理使其溶解度下降,产生了一定比例的不溶性蛋白。大豆分离蛋白可以通过酶解获得更优良的乳化性能。为了确定蛋白结构组成与性质的关系,在特定条件下,利用胃蛋白酶和木瓜蛋白酶对大豆分离蛋白进行水解来获得不同多肽谱的水解产物。与天然大豆分离蛋白(NSPI)相比,CSPI的电泳图显示:β-伴大豆球蛋白的β-亚基和大豆球蛋白的碱...
【文章来源】:江南大学江苏省 211工程院校 教育部直属院校
【文章页数】:133 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abstract
摘要
LIST OF ABBREVIATION
Chapter1 Introduction
1.1 Overview of Study
1.2 Literature Review
1.2.1 Overview of Soy protein
1.2.2 Soy Protein Isolate Processing
1.2.3 Commercial soy protein isolates
1.2.4 Soy protein functionalities
1.3 Soy protein isolates enzymatic modification
1.3.1 Pepsin
1.3.2 Papain
1.3.3 Alcalase
1.4 Whippable Dairy emulsions
1.4.1 Overview typical emulsion and whippable dairy emulsion
1.4.2 Small molecule emulsifier and protein competitive displacement
1.4.3 Ice cream
1.4.4 Whipping cream
1.4.5 Soy protein application in whippable emulsions
Reference
Chapter2 Isolation and Characterization of Soy Protein Isolate and its hydrolysates by Pepsin and Papain
2.1 Introduction
2.2 Method and Materials
2.2.1 Materials
2.2.2 Preparation of soy protein hydrolysates
2.2.3 Determination of the degree of hydrolysis(DH)
2.2.4 Protein content determination
2.2.5 Molecular weight distribution by HPLC
2.2.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis(SDS–PAGE)
2.2.7 Zeta-potential analysis
2.2.8 Rheological measurement
2.2.9 Interfacial shear rheology measurements
2.2.10 Protein Solubility and pH
2.2.11 ESI and EAI
2.2.12 Particle size distribution
2.2.13 Statistical analysis
2.3 Results and Discussion
2.3.1 Protein content determination
2.3.2 Degree of Hydrolysis
2.3.3 Molecules weight distribution of soy protein and its hydrolysates
2.3.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
2.3.5 Solubility and pH
2.3.6 Zeta-potential determination
2.3.7 Rheological measurement
2.3.8 EAI and ESI
2.3.9 Particle size distribution
2.4 Conclusion
Reference
Chapter3 Impact of soy proteins,hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability
3.1 Introduction
3.2 Materials and Method
3.2.1 Materials
3.2.2 Surface tension
3.2.3 Interfacial shear rheology measurements
3.2.4 Emulsion preparation
3.2.5 Particle Size distribution
3.2.6 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.2.7 Adsorbed protein analysis
3.2.8 Statistical Analysis
3.3 Results and Discussion
3.3.1 Equilibrium surface tension
3.3.2 Interfacial Rheology
3.3.3 Characteristics of emulsions
3.3.4 Oil droplet size in the emulsion
3.3.5 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.4 Conclusion
Reference
Chapter4 Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Preparation and characterization of soy protein isolate and its hydrolysates
4.2.3 Formulation of ice cream and processing
4.2.4 Rheological properties
4.2.5 Particle size distribution
4.2.6 Adsorbed protein fraction determination
4.2.7 Melt-down properties of ice cream
4.2.8 Confocal laser scanning microscopy(CLSM)
4.2.9 Statistical Analysis
4.3 Results and Discussion
4.3.1 Composition and properties of soy protein isolate and its hydrolysate
4.3.2 Rheological properties of ice cream mixes
4.3.3 Meltdown rate
4.3.4 Particle Size Distribution
4.3.5 Adsorbed protein fraction and composition
4.3.6 Confocal Laser scanning microscopy(CLSM)
4.4 Conclusion
References
Chapter5 Effects of soy proteins and hydrolysates on fat globule coalescence and whipping properties of low-fat whipped cream
5.1 Introduction
5.2 Materials and methods
5.2.1 Materials
5.2.2 The formulation of whipping cream and processing
5.2.3 Composition of soy protein and its hydrolysates
5.2.4 Particle Size distribution
5.2.5 Overrun
5.2.6 Measurement of partial coalescence of fat
5.2.7 Serum drainage
5.2.8 Measurement of rheological behaviour of whipped cream
5.2.9 Analysis of textural properties
5.2.10 Statistics Analysis
5.3 Result and discussion
5.3.1 Composition of Soy protein isolate and its hydrolysates
5.3.2 Particle size distribution of fresh emulsion and whipped cream
5.3.3 Overrun of whipped cream
5.3.4 Measurement of partial coalescence of fat
5.3.5 Stability of whipped cream
5.3.6 Rheological behaviour of whipped cream
5.3.7 Texture of whipped cream
5.4 Conclusion
Reference
Main conclusions and prospects
Main conclusions
Prospects
Thesis innovation
Appendix.List of Published Paper duing Ph.D Study in Jiangnan University
【参考文献】:
期刊论文
[1]不同热处理大豆分离蛋白凝胶冻藏特性[J]. 陈振家,施小迪,杜昱蒙,姚美伊,郭顺堂. 农业工程学报. 2016(11)
[2]PVAc乳胶/改性大豆分离蛋白共混胶黏剂的制备及性能[J]. 曾念,谢建军,丁出,刘军霞. 化工进展. 2014(12)
本文编号:3066619
【文章来源】:江南大学江苏省 211工程院校 教育部直属院校
【文章页数】:133 页
【学位级别】:博士
【文章目录】:
Acknowledgements
Abstract
摘要
LIST OF ABBREVIATION
Chapter1 Introduction
1.1 Overview of Study
1.2 Literature Review
1.2.1 Overview of Soy protein
1.2.2 Soy Protein Isolate Processing
1.2.3 Commercial soy protein isolates
1.2.4 Soy protein functionalities
1.3 Soy protein isolates enzymatic modification
1.3.1 Pepsin
1.3.2 Papain
1.3.3 Alcalase
1.4 Whippable Dairy emulsions
1.4.1 Overview typical emulsion and whippable dairy emulsion
1.4.2 Small molecule emulsifier and protein competitive displacement
1.4.3 Ice cream
1.4.4 Whipping cream
1.4.5 Soy protein application in whippable emulsions
Reference
Chapter2 Isolation and Characterization of Soy Protein Isolate and its hydrolysates by Pepsin and Papain
2.1 Introduction
2.2 Method and Materials
2.2.1 Materials
2.2.2 Preparation of soy protein hydrolysates
2.2.3 Determination of the degree of hydrolysis(DH)
2.2.4 Protein content determination
2.2.5 Molecular weight distribution by HPLC
2.2.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis(SDS–PAGE)
2.2.7 Zeta-potential analysis
2.2.8 Rheological measurement
2.2.9 Interfacial shear rheology measurements
2.2.10 Protein Solubility and pH
2.2.11 ESI and EAI
2.2.12 Particle size distribution
2.2.13 Statistical analysis
2.3 Results and Discussion
2.3.1 Protein content determination
2.3.2 Degree of Hydrolysis
2.3.3 Molecules weight distribution of soy protein and its hydrolysates
2.3.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
2.3.5 Solubility and pH
2.3.6 Zeta-potential determination
2.3.7 Rheological measurement
2.3.8 EAI and ESI
2.3.9 Particle size distribution
2.4 Conclusion
Reference
Chapter3 Impact of soy proteins,hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability
3.1 Introduction
3.2 Materials and Method
3.2.1 Materials
3.2.2 Surface tension
3.2.3 Interfacial shear rheology measurements
3.2.4 Emulsion preparation
3.2.5 Particle Size distribution
3.2.6 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.2.7 Adsorbed protein analysis
3.2.8 Statistical Analysis
3.3 Results and Discussion
3.3.1 Equilibrium surface tension
3.3.2 Interfacial Rheology
3.3.3 Characteristics of emulsions
3.3.4 Oil droplet size in the emulsion
3.3.5 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.4 Conclusion
Reference
Chapter4 Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Preparation and characterization of soy protein isolate and its hydrolysates
4.2.3 Formulation of ice cream and processing
4.2.4 Rheological properties
4.2.5 Particle size distribution
4.2.6 Adsorbed protein fraction determination
4.2.7 Melt-down properties of ice cream
4.2.8 Confocal laser scanning microscopy(CLSM)
4.2.9 Statistical Analysis
4.3 Results and Discussion
4.3.1 Composition and properties of soy protein isolate and its hydrolysate
4.3.2 Rheological properties of ice cream mixes
4.3.3 Meltdown rate
4.3.4 Particle Size Distribution
4.3.5 Adsorbed protein fraction and composition
4.3.6 Confocal Laser scanning microscopy(CLSM)
4.4 Conclusion
References
Chapter5 Effects of soy proteins and hydrolysates on fat globule coalescence and whipping properties of low-fat whipped cream
5.1 Introduction
5.2 Materials and methods
5.2.1 Materials
5.2.2 The formulation of whipping cream and processing
5.2.3 Composition of soy protein and its hydrolysates
5.2.4 Particle Size distribution
5.2.5 Overrun
5.2.6 Measurement of partial coalescence of fat
5.2.7 Serum drainage
5.2.8 Measurement of rheological behaviour of whipped cream
5.2.9 Analysis of textural properties
5.2.10 Statistics Analysis
5.3 Result and discussion
5.3.1 Composition of Soy protein isolate and its hydrolysates
5.3.2 Particle size distribution of fresh emulsion and whipped cream
5.3.3 Overrun of whipped cream
5.3.4 Measurement of partial coalescence of fat
5.3.5 Stability of whipped cream
5.3.6 Rheological behaviour of whipped cream
5.3.7 Texture of whipped cream
5.4 Conclusion
Reference
Main conclusions and prospects
Main conclusions
Prospects
Thesis innovation
Appendix.List of Published Paper duing Ph.D Study in Jiangnan University
【参考文献】:
期刊论文
[1]不同热处理大豆分离蛋白凝胶冻藏特性[J]. 陈振家,施小迪,杜昱蒙,姚美伊,郭顺堂. 农业工程学报. 2016(11)
[2]PVAc乳胶/改性大豆分离蛋白共混胶黏剂的制备及性能[J]. 曾念,谢建军,丁出,刘军霞. 化工进展. 2014(12)
本文编号:3066619
本文链接:https://www.wllwen.com/projectlw/hxgylw/3066619.html
最近更新
教材专著