基于磷脂组装体的生物膜及杂化生物材料的制备
发布时间:2021-03-16 12:26
细胞是已知生命体结构和功能的基本单元。其外部为细胞膜,内部含有细胞质和细胞器。在合成生物学中,人造细胞可用于模拟细胞的一种或多种基本功能。由于细胞的复杂性,人们只构建出具有某种特定功能的人造细胞,迄今还未构建出具有所有细胞功能的人造细胞。细胞中最重要的组成部分是生物膜,它决定着细胞的形状、物质的转运以及细胞内外信号的传递。针对目前细胞膜构建中存在的问题,本文开展了以下研究:1)利用面对面电极体系研究尺寸可控的巨型囊泡的电形成过程;2)电形成过程中电场方向对形成高曲面膜模型磷脂管的影响;3)利用调制电场制备和真核细胞结构类似的双层磷脂囊泡;4)碳纳米管和磷脂的结合形成生物相容的螺旋结构,作为未来用于先进药物递送的微型机器人。首先采用电形成的方法制备了巨型囊泡(GUVs)。利用等离子体表面处理的氧化铟锡电极,通过响应曲面法考察了不同因素(电压、频率和温度)对囊泡尺寸的影响。同时探讨了具有不同电性(中性、正电性和负电性)的磷脂对GUVs的形成及尺寸的影响。研究表明,GUVs可以在较宽的电压、频率和温度下形成。但是不同的因素对GUVs尺寸的影响不一样,在1-6V范围内,GUVs直径随着电压的升...
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:135 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the study
1.2 The hydrophobic effect of amphiphilic mo lecules
1.3 Introduction to self-assembly of phospholipids
1.3.1 Phospholipid self-assembly in aqueous solution
1.3.2 Phospholipid self-assembly on solid substrate
1.4 Methods for construction of phospholipid self-assembly
1.4.1 Construction of spherical phospholipid assembly
1.4.2 Construction of non spherical phospholipid assembly
1.4.3 Construction of multi vesicles assemblies
1.4.4 Construction of phospholipid self-assembly on solid substrate
1.5 Main research contents of this subject
Chapter 2. Materials and Methods
2.1 Main raw materials and reagents
2.2 Experimental instrument
2.3 Materials characterization
2.3.1 Phospholipid charachterization
2.3.2 Carbon nanotubes characterization
2.4 Experimental
2.4.1 Formation of GUVs assembly using electroformation methods
2.4.2 Electroformation of lipid tubes using film paralleling electric field
2.4.3 Electroformation of double vesicles using AM electric field
2.4.4 Preparation of phospholipid-CNTs hybrids
2.5 Characterization methods
2.5.1 Fluorescent microscopy test methods
2.5.2 Confocal laser scanning microscopy
2.5.3 Scanning electron microscopy
2.5.4 Diameter determination method
2.6 Mathematical methods and simulation tools
2.6.1 Design of experiments
2.6.2 COMSOL simulation
2.6.3 Solution of Laplace equation for AM electric field on semi spherical shell
Chapter 3. Self-assembly of giant vesicles with controlled size usingelectroformation
3.1 Introduction
3.2 Formation of GUVs at different electroformation parameters
3.2.1 Influence of Electroformation time on GUVs size and PolydispersityIndex
3.2.2 Electroformation of GUVs at different electric potentials
3.2.3 Electroformation of GUVs at different frequencies
3.2.4 Electroformation of GUVs at different temperatures
3.3 Matrix Design and models building
3.4 Models validation
3.5 Effect of individual parameters on the formation of GUVs
3.5.1 Effect of electric potential
3.5.2 Effect of frequency
3.5.3 Effect of temperature
3.5.4 Effect of phospholipid composition
3.6 Effect of interaction between parameters
3.6.1 Interaction between electrical potential-frequency
3.6.2 Interaction between temperature-frequency
3.6.3 Interaction between temperature-electric potential
3.7 Summary
Chapter 4. Self-assembly of tubular biomembrane and double vesicles usingelectroformation
4.1. Introduction
4.2 Electroformation of lipid microtubules
4.2.1 Description of the experimental device
4.2.2 Formation of phospholipid tubes
4.3 Parameters influence the formation of phospholipid tubules
4.3.1 Influence of electric field strength
4.3.2 Influence of electric field direction on the formation of tubes
4.4 Mechanism of lipid tubes formation
4.5 Vesicles electroformation under different wave function
4.6 Validation of the formation of double vesicles
4.7 Parameters influence the formation of doubles vesicles
4.7.1 Effect of critical time
4.7.2 Effect of modulated and carrier frequencies
4.7.3 Effect of amplitude depth
4.8 Mechanism of double vesicle formation
4.9 Theoretical aspect of domes elongation into tubes
4.9.1 Calculation of the pulling force under AM electric field
4.9.2 Calculation of the critical force under AM electric field
4.10 Summary
Chapter 5 Self-assembly of phospholipid-CNTs hybrids helical structures
5.1 Introduction
5.2 Size distribution of CNT
5.3 Self-assembly of neutral phospholipids on long CNTs
5.4 Self-assembly of charged phospholipid on CNTs
5.4.1 Self-assembly of charged phospholipid on short CNTs
5.4.2 Self-assembly of charged phospholipid on medium CNTs
5.4.3 Self-assembly of charged phospholipid on long CNTs
5.5 Formation mechanism of phospholipid@CNTs helical structures
5.6 Effect of phospholipid/CNTs mass ratio on the formation of springs
5.7 Summary
Conclusion
Innovative points of this thesis
Perspectives
References
List of publications
Acknowledgement
Resume
本文编号:3086035
【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校
【文章页数】:135 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the study
1.2 The hydrophobic effect of amphiphilic mo lecules
1.3 Introduction to self-assembly of phospholipids
1.3.1 Phospholipid self-assembly in aqueous solution
1.3.2 Phospholipid self-assembly on solid substrate
1.4 Methods for construction of phospholipid self-assembly
1.4.1 Construction of spherical phospholipid assembly
1.4.2 Construction of non spherical phospholipid assembly
1.4.3 Construction of multi vesicles assemblies
1.4.4 Construction of phospholipid self-assembly on solid substrate
1.5 Main research contents of this subject
Chapter 2. Materials and Methods
2.1 Main raw materials and reagents
2.2 Experimental instrument
2.3 Materials characterization
2.3.1 Phospholipid charachterization
2.3.2 Carbon nanotubes characterization
2.4 Experimental
2.4.1 Formation of GUVs assembly using electroformation methods
2.4.2 Electroformation of lipid tubes using film paralleling electric field
2.4.3 Electroformation of double vesicles using AM electric field
2.4.4 Preparation of phospholipid-CNTs hybrids
2.5 Characterization methods
2.5.1 Fluorescent microscopy test methods
2.5.2 Confocal laser scanning microscopy
2.5.3 Scanning electron microscopy
2.5.4 Diameter determination method
2.6 Mathematical methods and simulation tools
2.6.1 Design of experiments
2.6.2 COMSOL simulation
2.6.3 Solution of Laplace equation for AM electric field on semi spherical shell
Chapter 3. Self-assembly of giant vesicles with controlled size usingelectroformation
3.1 Introduction
3.2 Formation of GUVs at different electroformation parameters
3.2.1 Influence of Electroformation time on GUVs size and PolydispersityIndex
3.2.2 Electroformation of GUVs at different electric potentials
3.2.3 Electroformation of GUVs at different frequencies
3.2.4 Electroformation of GUVs at different temperatures
3.3 Matrix Design and models building
3.4 Models validation
3.5 Effect of individual parameters on the formation of GUVs
3.5.1 Effect of electric potential
3.5.2 Effect of frequency
3.5.3 Effect of temperature
3.5.4 Effect of phospholipid composition
3.6 Effect of interaction between parameters
3.6.1 Interaction between electrical potential-frequency
3.6.2 Interaction between temperature-frequency
3.6.3 Interaction between temperature-electric potential
3.7 Summary
Chapter 4. Self-assembly of tubular biomembrane and double vesicles usingelectroformation
4.1. Introduction
4.2 Electroformation of lipid microtubules
4.2.1 Description of the experimental device
4.2.2 Formation of phospholipid tubes
4.3 Parameters influence the formation of phospholipid tubules
4.3.1 Influence of electric field strength
4.3.2 Influence of electric field direction on the formation of tubes
4.4 Mechanism of lipid tubes formation
4.5 Vesicles electroformation under different wave function
4.6 Validation of the formation of double vesicles
4.7 Parameters influence the formation of doubles vesicles
4.7.1 Effect of critical time
4.7.2 Effect of modulated and carrier frequencies
4.7.3 Effect of amplitude depth
4.8 Mechanism of double vesicle formation
4.9 Theoretical aspect of domes elongation into tubes
4.9.1 Calculation of the pulling force under AM electric field
4.9.2 Calculation of the critical force under AM electric field
4.10 Summary
Chapter 5 Self-assembly of phospholipid-CNTs hybrids helical structures
5.1 Introduction
5.2 Size distribution of CNT
5.3 Self-assembly of neutral phospholipids on long CNTs
5.4 Self-assembly of charged phospholipid on CNTs
5.4.1 Self-assembly of charged phospholipid on short CNTs
5.4.2 Self-assembly of charged phospholipid on medium CNTs
5.4.3 Self-assembly of charged phospholipid on long CNTs
5.5 Formation mechanism of phospholipid@CNTs helical structures
5.6 Effect of phospholipid/CNTs mass ratio on the formation of springs
5.7 Summary
Conclusion
Innovative points of this thesis
Perspectives
References
List of publications
Acknowledgement
Resume
本文编号:3086035
本文链接:https://www.wllwen.com/projectlw/hxgylw/3086035.html
最近更新
教材专著