大数据分析与畅销书选题的精准策划
发布时间:2019-03-14 15:53
【摘要】:读者每天在各种网络平台上留下的结构化、半结构化的海量数据蕴涵巨大的商业价值,出版业如果能够对这些读者生成内容(UGC)进行有效数据分析和挖掘,可能对产业两端的生产和销售服务带来革命性变革。文章从生产环节出发,探讨以打造畅销书为目标的图书选题如何借力大数据,对海量UGC进行分析,从而有效把握读者需求,达到选题的精准策划。然而从实际情况看,传统出版商并不具备存储和分析大数据的能力,同现有大数据拥有者进行数据买卖与合作,实行数据外包挖掘服务是利用大数据更实际的路径。同时大数据也并非万能,需警惕读者需求与社会价值许可等产生的矛盾。
[Abstract]:The structured, semi-structured mass of data that readers leave behind on various web platforms every day contains enormous commercial value. If the publishing industry can effectively analyze and mine these readers' generated content (UGC), It could revolutionize production and sales services at both ends of the industry. Starting from the production link, this paper discusses how to use big data to analyze the mass of UGC in order to effectively grasp the readers' needs and achieve the precise planning of the title selection, which aims at creating a best-selling book. However, from the actual situation, traditional publishers do not have the ability to store and analyze big data, carry on data sale and cooperation with existing big data owners, and implement data outsourcing mining service is a more practical way to utilize big data. At the same time, big data is not omnipotent, we should be vigilant against the contradiction between readers' needs and social value permission.
【作者单位】: 内蒙古大学文学与新闻传播学院;
【分类号】:G232.1
[Abstract]:The structured, semi-structured mass of data that readers leave behind on various web platforms every day contains enormous commercial value. If the publishing industry can effectively analyze and mine these readers' generated content (UGC), It could revolutionize production and sales services at both ends of the industry. Starting from the production link, this paper discusses how to use big data to analyze the mass of UGC in order to effectively grasp the readers' needs and achieve the precise planning of the title selection, which aims at creating a best-selling book. However, from the actual situation, traditional publishers do not have the ability to store and analyze big data, carry on data sale and cooperation with existing big data owners, and implement data outsourcing mining service is a more practical way to utilize big data. At the same time, big data is not omnipotent, we should be vigilant against the contradiction between readers' needs and social value permission.
【作者单位】: 内蒙古大学文学与新闻传播学院;
【分类号】:G232.1
【参考文献】
相关期刊论文 前3条
1 刘鲲翔;杜丽娟;丁雪;;大数据技术在数字出版中的应用前景展望[J];出版发行研究;2013年04期
2 王异;;科技出版数字化转型中的探索——管窥科学出版社数字出版实践[J];科技与出版;2013年06期
3 张博;任殿顺;;大数据背景下UGC的价值研究和出版应用[J];科技与出版;2014年03期
【共引文献】
相关期刊论文 前10条
1 张博;乔欢;李武;;基于大数据的出版内容价值发现与应用[J];出版发行研究;2014年03期
2 李海凌;;大数据时代医学出版的选题策划[J];中国编辑;2014年03期
3 刘立玲;张群力;;大数据在出版产业的实践与展望[J];出版广角;2014年12期
4 向安玲;沈阳;;基于大数据的出版流程变革[J];出版广角;2014年14期
5 付婉莹;薛创;;基于大数据的数字出版模式研究[J];出版发行研究;2014年11期
6 张振宇;周莉;;“大数据出版”的理念、方法及发展路径[J];出版发行研究;2015年01期
7 徐晓东;孔晨晨;席正祺;;大数据云计算技术在全国机动车缉查布控系统中的应用[J];中国公共安全(学术版);2015年01期
8 梁莹;;大数据分析在出版中的应用与展望[J];出版广角;2015年02期
9 周军;吴e,
本文编号:2440127
本文链接:https://www.wllwen.com/shekelunwen/chubanfaxing/2440127.html