当前位置:主页 > 社科论文 > 公安论文 >

城市公安刑事案件的关联分析模型研究

发布时间:2018-10-08 06:45
【摘要】: “金盾工程”建设在全国进入全面推进的新阶段,城市公安信息化基础工作建设取得了巨大成绩,同时也存在一些问题,,如公安各类信息资源没有得到充分挖掘和合理利用,不能以简便、灵活的应用手段为领导和一线民警开展工作提供综合信息和科学决策支持。近年来发展的数据挖掘技术能够发现数据中隐藏的规律,起到辅助决策的作用。本文研究的主要内容是数据挖掘技术在城市公安应用研究中一个重要部分——刑事案件的关联分析模型。 本文首先提出了城市公安刑事案件关联分析模型的总体框架,然后研究了模型各步骤中使用的方法与算法,主要有以下几个方面:在数据预处理过程中,给出了适合公安数据提取与清理的策略,在此基础上,建立刑事案件多维数据模型,包括选取星型数据模式,使用分箱等方法对数据进行离散化与概念分层处理,建立数据立方体。然后进行多维关联规则挖掘,利用改进的Apriori算法寻找频繁谓词集,按照最小支持度与最小置信度的要求在频繁谓词集中产生强关联规则。在进行多层关联规则挖掘时,本文分析选取了层交叉单项过滤策略,通过修改多维频繁谓词集算法来发现不同概念层中的频繁谓词集,产生强关联规则,最后利用检验冗余规则原则去除冗余结果。在本文的最后,利用大连市公安局提供的刑事案件数据,按照模型的方法与步骤,选择了适当的工具,完成了大连市甘井子区刑事案件的关联分析,验证了模型的正确性与有效性。 本文的研究为今后城市公安数据挖掘应用研究提供了参考,对辅助公安决策具有理论意义与现实意义。
[Abstract]:The construction of the "Golden Shield Project" has entered a new stage of comprehensive promotion throughout the country, and great achievements have been made in the construction of the basic work of urban public security informatization. At the same time, there are also some problems, such as the insufficient exploitation and rational utilization of all kinds of public security information resources. The simple and flexible application means can not provide comprehensive information and scientific decision support for leaders and frontline police. The data mining technology developed in recent years can discover the hidden rules in the data and play an assistant role in decision-making. The main content of this paper is the association analysis model of criminal cases, which is an important part of the application of data mining technology in urban public security. This paper first puts forward the general framework of the criminal case association analysis model of the city public security, and then studies the methods and algorithms used in each step of the model. The main aspects are as follows: in the process of data preprocessing, On the basis of this, the multi-dimensional data model of criminal case is established, including selecting star data model, using the method of dividing boxes and so on, to discretize the data and deal with the concept stratification. Create a data cube. Then the multi-dimension association rule mining is carried out and the improved Apriori algorithm is used to find the frequent predicate set. Strong association rules are generated in the frequent predicate set according to the requirement of minimum support degree and minimum confidence degree. In the mining of multi-level association rules, this paper analyzes and selects the layer cross single item filtering strategy, by modifying the multi-dimensional frequent predicate set algorithm to find the frequent predicate sets in different concept layers, and produces strong association rules. Finally, the redundancy results are removed by using the principle of checking redundancy rules. At the end of this paper, by using the criminal case data provided by Dalian Public Security Bureau, according to the method and steps of the model, the appropriate tools are selected, and the correlation analysis of criminal cases in Ganjingzi District of Dalian City is completed. The correctness and validity of the model are verified. The research in this paper provides a reference for the application of urban public security data mining in the future, and has theoretical and practical significance to assist public security decision-making.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2007
【分类号】:D631.2

【引证文献】

相关期刊论文 前1条

1 王春雨;王雪华;郭发志;叶鑫;;大连市社会治安防控警务模式研究[J];大连理工大学学报(社会科学版);2009年04期

相关博士学位论文 前1条

1 王春雨;刑事案件关联分析与防控警务模式研究[D];大连理工大学;2010年

相关硕士学位论文 前1条

1 王娜;一种冗余规则删减方法及其应用[D];大连理工大学;2011年



本文编号:2255818

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/gongan/2255818.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f055c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com