人员活动和空气净化器对气管镜室空气微生物和颗粒物的影响
本文关键词:人员活动和空气净化器对气管镜室空气微生物和颗粒物的影响 出处:《南方医科大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 气管镜室 空气净化器 细菌 真菌 总微生物 PM_(2.5) PM_(2.5-10.0)
【摘要】:目的评价人员活动和空气净化器对气管镜室空气微生物和颗粒物的影响。方法选择面积为28m2的气管镜室为实验场所,分两部分进行实验,第一部分为分别在无人员活动(静态组)、少量人员活动(动态组1)、更多人员活动(动态组2)的五个不同时间点(Oh、0.5h、1h、2h、4h),在室内对角线三点对空气进行采样和分析,用浮游菌法采集空气中的微生物并培养、计数及分类、鉴定,用DT-9881M激光尘埃粒子计数器检测颗粒物浓度及大小分布,分析不同人员活动状态下的气管镜室空气微生物和颗粒物水平,评价人员活动单一因素的影响;第二部分按照气管镜室有无人员活动和空气净化器BA-6065净化,将实验分成六组:静态无净化组(无人员活动、无净化器)、静态净化组(无人员活动、有净化器)、动态无净化组1(少量人员活动、无净化器)、动态净化组1(少量人员活动、有净化器)、动态无净化组2(更多人员活动、无净化器)、动态净化组2(更多人员活动、有净化器),按第一部分方法检测气管镜室空气微生物和颗粒物,运用混合线性模型分析人员活动和空气净化器两个因素对气管镜室空气微生物和颗粒物的影响。结果1.静态组的总微生物浓度(细菌+真菌)为(149.33±4.98)CFU/m3,细菌、真菌浓度分别为(84.33±3.65)CFU/m3、(65.00±2.66)CFU/m3,动态组1的总微生物浓度为(203.20±10.92)CFU/m3,细菌、真菌浓度分别为(113.53±7.78)CFU/m3、(89.67±7.17)CFU/m3,动态组 2 的总微生物浓度为(299.85±13.92)CFU/m3,细菌、真菌浓度分别为(186.29±13.04)CFU/m3、(113.56±6.45)CFU/m3。动态组1的总微生物浓度、细菌、真菌浓度均明显高于静态组,差异有统计学意义(p0.05),动态组2的上述三个浓度亦均明显高于相应的静态组和动态组1,差异均有统计学意义(p0.05)。2.静态组的 PM2.5、PM2.5-10.0浓度分别为(45812.64±1279.61)个/m3、(189.15± 4.64)个/m3,动态组 1 的 PM2.5、PM2.5-10.0 浓度分别为(86557.20±4158.29)个/m3、(659.69±38.91)个/m3,动态组2的PM2.5、PM2.5-10.0浓度分别为(53907.39±1226.79)个/m3、(403.04±10.98)个/m3。PM2.5、PM2.5-10.。浓度在动态组 1 和动态组2均显著高于静态组(p均0.05),但在动态组2显著低于动态组1(p0.05)。3.静态组气管镜室空气中的细菌约占总微生物的55.3%,其中革兰阳性球菌最多见(约70%),革兰阴性杆菌次之(约15%),真菌约占总微生物的44.7%,以青霉和曲霉最多见。4.不同组气管镜室空气中颗粒物的粒径构成情况均为PM0.3—0.PM0.5-1.0PM1.0-2.5PM2.5-5.0PM5.0-10.0PM≥10.0,粒径越小,数量越多,PM主要由 PM0.3-0.5、PMo.5-1.0和PM 1.0-2.5 构成,即PM2.5,占总颗粒物的999%以上。5.无论气管镜室有无人员活动及数量多少,净化器BA-6065对空气中的细菌、PM2.5、PM2.5—10.0浓度均有显著的清除效果(p0.05),总微生物和真菌浓度在净化器组和无净化器组之间无显著性差异(p0.05),说明此净化器对总微生物和真菌的清除作用不明显。结论人员活动增加气管镜室空气中包括细菌、真菌在内的微生物气溶胶浓度和可吸入颗粒物浓度;空气净化器BA-6065能降低有或无人员活动时空气中的细菌和可吸入颗粒物浓度,有防控经气溶胶传播的院内呼吸道感染的应用前景。
[Abstract]:Objective to evaluate the effect of personnel activities and air purifier for bronchoscopy room air microbial and particulate matter. Methods the area of bronchoscope room 28m2 as experimental sites, divided into two parts the first part is the experiment, respectively in the absence of personnel activities (static group), a small amount of personnel activities (dynamic group 1), more staff activities (dynamic group 2) of the five different time points (Oh, 0.5h, 1H, 2h, 4h), in the interior three diagonal points on air sampling and analysis, collection of microorganisms in the air and cultured by planktonic bacteria method, counting and classification, identification, using DT-9881M laser particle counter detection of particle concentration and size the distribution, analysis of different staff activities under bronchoscope room air microbial and particulate matter levels, impact assessment activities of single factor; the second part according to the bronchoscope room without staff activities and air purifier BA-6065 purification, the Into six groups: static purification group (no activities, no cleaner), static purification group (no human activity, there is no dynamic purifier), group 1 (no small amount of purification purifier personnel activities), dynamic purification group of 1 (a small amount of staff activities, there is no net of dynamic purifier), group 2 (purifier no more personnel activities), dynamic purification group of 2 (more personnel, according to the first part, a purifier) method for the detection of bronchoscope room air microbial and particulate matter, using mixed linear model to analyze the effects of personnel activities and the air purifier two factors on the gas pipe mirror room air microorganism and particles. Results the total microbial concentration 1. static groups (bacterial and fungal) for (149.33 + 4.98) CFU/m3, bacteria, fungal concentrations were (84.33 + 3.65) CFU/m3, (65 + 2.66) CFU/m3, the total microbial concentration dynamic group 1 is (203.20 + 10.92) CFU/m3, bacteria, fungal concentrations were (113.53 + 7.78) CFU/ M3, (89.67 + 7.17) CFU/m3, the total microbial concentration dynamic group 2 is (299.85 + 13.92) CFU/m3, bacteria, fungal concentrations were (186.29 + 13.04) CFU/m3, (113.56 + 6.45) total microbial concentration, dynamic group of 1 CFU/m3. bacteria, fungi concentration were significantly higher than that in static group, was statistically significant the difference (P0.05), three of the concentration of dynamic group 2 were significantly higher than the corresponding static and dynamic group 1, the differences were statistically significant (P0.05).2. static group PM2.5, PM2.5-10.0 concentrations were (45812.64 + 1279.61) /m3, (189.15 + 4.64) /m3, dynamic group of 1 PM2.5 the concentration of PM2.5-10.0, respectively (86557.20 + 4158.29) /m3, (659.69 + 38.91) /m3, dynamic group 2 PM2.5, PM2.5-10.0 concentration was (53907.39 + 1226.79) /m3, (403.04 + 10.98) /m3.PM2.5, the concentration of PM2.5-10.. In the dynamic group 1 and group 2 were significantly higher than that of the static dynamic group (P 0.05), but in Dynamic group 2 was significantly lower than that of group 1 (P0.05).3. dynamic static group air bronchoscope room in bacteria accounted for about 55.3% of the bacteria, gram positive coccus (70%), gram negative bacilli (15%), fungi accounted for about 44.7% of the microorganisms, to Penicillium and Aspergillus most see particulate air.4. different groups of bronchoscope room in particle size composition were PM0.3 - 0.PM0.5-1.0PM1.0-2.5PM2.5-5.0PM5.0-10.0PM = 10, the smaller the particle size, the more the number of PM, mainly by PM0.3-0.5, PMo.5-1.0 and PM 1.0-2.5, namely PM2.5, the number of total particles more than 999%.5. regardless of bronchoscope room there is no personnel and activities the number of bacteria in the air purifier BA-6065, PM2.5, PM2.5 10 concentration had significant scavenging effect (P0.05), no significant difference in total bacteria and fungi concentration between the purifier group and non purifier group (P0.05), indicating that this purifier on Scavenging effect of total bacteria and fungi was not obvious. Conclusion activities increase air bronchoscope room including bacteria, fungi, microbial aerosol concentration and the concentration of respirable particulate matter; air purifier can reduce BA-6065 with or without personnel activities in the air of bacteria and the concentration of respirable particulate matter, application of respiratory tract infection prevention and control of gas sol spread in the hospital.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R12
【参考文献】
相关期刊论文 前10条
1 杨环;王蓓;姚新宝;周媛;陆晨;;2014年新疆132所医院医院感染横断面流行病学调查[J];中国感染控制杂志;2015年10期
2 高芳;张杰;吴艳艳;邹俊宁;朱明;熊莉娟;;4249例住院患者医院感染现患率调查[J];中国消毒学杂志;2015年03期
3 Xuemei Wang;Jianmin Chen;Tiantao Cheng;Renyi Zhang;Xinming Wang;;Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai[J];Journal of Environmental Sciences;2014年09期
4 方治国;孙平;欧阳志云;刘們;孙力;王小勇;;北京市居家空气微生物粒径及分布特征研究[J];环境科学;2013年07期
5 时彦玲;邓林红;;细颗粒物(PM_(2.5))对气道的病理作用及其与哮喘病理机制的关系[J];医用生物力学;2013年02期
6 刘江红;;多功能动态杀菌机对支气管镜室空气消毒效果分析[J];实用临床医学;2011年03期
7 刘勇;芦茜;谭永强;袁洪;黄志军;;空气净化机对重症监护病房空气中可吸入颗粒物动态净化效果的观察[J];中华医院感染学杂志;2010年02期
8 李晓黎;;室内空气污染物的来源、危害与控制[J];内蒙古环境科学;2009年01期
9 李霞;丁培;王友斌;郑萍;;不同种类空气净化器净化室内细菌的效果评价[J];中国卫生检验杂志;2008年01期
10 钱华;戴海夏;;室内空气污染与人体健康的关系[J];环境与职业医学;2007年04期
,本文编号:1404704
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1404704.html