厌氧条件下土壤典型氧化还原过程对五氯酚还原转化的影响
本文关键词:厌氧条件下土壤典型氧化还原过程对五氯酚还原转化的影响 出处:《浙江大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 五氯酚(PCP) 电子供体 硫酸盐还原 铁还原 产甲烷
【摘要】:五氯酚(PCP)作为一种致毒、致畸、致癌的"三致"氯代有机物,因其在环境中难降解,而被列入了优先污染物。PCP曾作为除草剂、杀虫剂、木材防腐剂等在世界范围内广泛应用,造成了土壤污染。土壤中PCP的还原转化主要是微生物参与的生化过程。一般来说,土壤中存在天然的铁还原、硫还原、产甲烷过程,且这些典型的还原过程在淹水厌氧条件下更活跃。因此,土壤,尤其是淹水土壤中PCP的还原转化必然与土壤中典型的氧化还原过程存在相互联系。本文研究了在厌氧条件下PCP还原脱氯与土壤中典型氧化还原过程(铁还原过程、硫还原过程、产甲烷过程)的关系,以为发展污染修复的优化方法和措施提供理论支撑。具体研究内容包括:产甲烷条件下,不同电子供体对PCP还原转化的影响;硫酸盐还原条件下,不同电子供体对PCP还原转化的影响;产甲烷过程对PCP还原转化的影响。获得的主要研究结果如下:(1)通过外源添加四种不同电子供体(甲酸钠、乙酸钠、丙酮酸钠、乳酸钠)设置了产甲烷条件开展研究,发现四种不同电子供体的外源添加都可不同程度地促进PCP的还原降解,但同时也促进了甲烷排放和有毒害的铁/硫还原物质的形成。在所有试验的电子供体中,丙酮酸钠对PCP还原降解的促进效果最好,但也造成了最多量的甲烷排放,还加重了土壤中铁/硫还原物质的毒害效应。综合考虑各种因素,乙酸钠是协调PCP还原转化与土壤天然氧化还原过程间相互作用的最佳电子供体,可在促进绝大部分PCP还原降解的同时,最大程度避免由外源电子供体添加导致的促进甲烷排放和有害铁/硫还原物质形成的负面效应。此外,基于多元统计的冗余分析(RDA)发现产甲烷过程和铁还原过程与PCP的还原脱氯表现为协同促进的关系。高通量测序结果揭示培养体系中主要的微生物菌属为Pseudomonas、Sedimentibacter、Clostridium、Desulfosporosinus、Desulfovibrio、Geosporobacter Thermotalea 和 Methanosaeta、以及 Pelobacteraceae 钢(该分类以下水平的微生物未检测到)。结合化学指标和微生物学指标的动态耦合关系分析发现,在丙酮酸钠、乳酸钠、乙酸钠处理中,关键功能性脱氯微生物可能包括:Sedimentibacter、Clostridium、Pseudomonas。而其它没有脱氯功能的细菌,尤其是铁还原菌(Pelobacteraceae和Geosporobacter Thermotalea)也可能通过与脱氯功能细菌间互养关系间接促进PCP的还原脱氯。通过所有还原过程中电子转移当量的化学计量分析,结合高通量测序分析揭示的功能微生物的动态变化特征,还可以推测,在电子供体充足的条件下(能确保所有还原过程所需的电子量的消耗),古菌Met淡anosaeta或许可能通过传递H2到功能性的脱氯菌来刺激还原脱氯的进行。(2)与第(1)部分研究体系相同,进一步考虑硫酸盐的影响作用,通过外源添加硫酸盐,设置了硫酸盐还原条件。通过研究发现,硫酸盐添加后,增强硫酸盐还原的条件下,大部分处理中PCP的还原降解速率有所降低,但Fe(Ⅲ)的还原得到促进。所试验的电子供体中,丙酮酸钠和乳酸钠在促进PCP还原降解方面显示出了最好的效果。同时,RDA分析显示出与产甲烷条件一致的结果,即产甲烷过程和铁还原过程与PCP的还原脱氯表现为协同促进的关系,但RDA结果也进一步发现硫酸盐还原过程与PCP的还原脱氯存在相互抑制的关系。高通量测序结果揭示培养体系中主要的微生物属为Pseudomonas、Sedimentibacter、Clostridium、Desulfosporosinus、Desulfovibrio、GeosporobacterThermotalea 和Methanosaeta以及Pelobacteraceae纲(该分类以下水平的微生物未检测到)。硫酸盐还原条件下,在丙酮酸钠、乳酸钠、乙酸钠处理中,关键的功能性脱氯微生物可能包括:Senenetibacter、Clostridiu、Pseudomonas;其它没有脱氯功能的细菌,尤其是铁还原菌(Pelobacteraceae和Geosporobacter Thermotalea)也可能通过与脱氯功能细菌间互养关系间接促进PCP的还原脱氯;且在电子供体充足的情况下,古菌Methanosaeta可能可以通过传递H2到功能性的脱氯菌来刺激还原脱氯过程。这些结论与产甲烷条件中的发现一致。有趣的是,化学指标和微生物学指标间的动态耦合关系还进一步支撑增强硫酸盐还原条件下可能存在与产甲烷条件不同的机制,即硫酸盐还原菌(Desulfosporosinus、Desulfovibrio)可能不仅具备还原硫酸盐的能力,还具备还原Fe(Ⅲ)的能力。此外,硫酸盐的添加还抑制了典型脱氯菌Dehalobacterium、铁还原菌Pelobacteraceae、脱氯功能性微生物Sedimentibacter和Pseudomonas的生长,促进了硫酸盐还原菌Desulfosporosinus和Desulfovibrio、脱氯功能性微生物Clostridium、铁还原菌Geosporobbacter Thermotalea的生长。硫酸盐的添加对产甲烷菌的生长没有影响,只是延缓产甲烷的过程。(3)通过外源添加辅酶M(CoM)或2-溴乙烷磺酸钠(BES)分别研究了促进产甲烷或抑制产甲烷条件下PCP的还原脱氯行为。发现CoM的添加抑制了土壤中铁还原菌的生长,促进了产甲烷菌的生长,促进了 PCP的还原脱氯;产甲烷抑制剂BES的添加促进了铁还原菌的生长,完全抑制了产甲烷菌的生长,抑制了 PCP的还原脱氯。高通量测序结果揭示培养体系中主要的微生物为Pseudomonas、Sedimentibacter、Desulfosporosinus、Desulfovibrio、Geosporobacter Thermotalea和Methanosaeta以及Pelobacteraceae纲(该分类以下水平的微生物未检测到)。在本试验中,其关键的功能性脱氯微生物可能有:Sedimentibacter和Pseudomonas。CoM的添加促进了Sedimentibacte 的生长、抑制了 Pseudomonas的生长,而BES处理中的情况刚好相反;同时,BES和CoM对关键的功能性脱氯微生物(Sedimentibacter+ Pseudomonas)的总量没有影响;此外,古菌 Methanosaeta 是淹水土壤PCP还原脱氯过程中的关键微生物。结合化学指标和微生物学指标间的动态耦合关系可推测:因土壤产甲烷过程是与PCP还原脱氯协同促进的过程,BES因此可通过抑制产甲烷进而抑制PCP的还原转化。
[Abstract]:Pentachlorophenol (PCP) is a toxic, teratogenic, carcinogenic "three letter" Chloroorganics, because of its difficult degradation in the environment, and is listed as priority pollutants.PCP used as herbicides, pesticides, wood preservatives is widely used in the world, causing soil pollution reduction transformation in soil. PCP is the main microorganism in biochemical process. In general, there is a natural iron reduction, reduction of sulfur in soil, methane production, and the typical reduction process in flooded anaerobic conditions more active. Therefore, soil, especially the reduction in waterlogged soil PCP and typical soil inevitable oxidation reduction process the existence of mutual contact. Studied under anaerobic conditions for reductive dechlorination of PCP in soil and typical redox process (the process of iron reduction, sulfur reduction, methanogenesis) relationship, that optimization methods and measures of developing pollution remediation Application to provide theoretical support. The research contents include: under methanogenic conditions, different electron donor reduction effect on PCP; sulfate reducing conditions, different electron donor reduction effect on PCP; methane production reduction effect on PCP. The main research results are as follows: (1) by adding exogenous four different electron donor (sodium formate, sodium acetate, sodium pyruvate, sodium lactate) set methanogenic conditions to carry out the research, found that four different kinds of exogenous electron donor addition can be promoted the reduction of PCP degradation, but also to promote the formation of methane emissions and toxic iron / sulfur reducing substances. All the test in the electronic donor, reduction effect best degradation of PCP sodium pyruvate, but also caused the greatest amount of methane emission, but also increased the poison effect of soil iron / sulfur reducing substances is taken into account. A variety of factors, is the best sodium electron interaction coordination PCP transformation and reduction of soil natural redox processes between the donor in the reductive degradation and promote the vast majority of PCP, the maximum extent to avoid the negative effects caused by adding promote methane emissions and harmful iron / sulfur reducing substances formed by exogenous electron donor. In addition, the multiple redundancy analysis based on the statistics (RDA) found that the methane production process and the process of iron reduction and reductive dechlorination of PCP showed synergistic relationship. High-throughput sequencing results reveal that microbial culture system mainly belong to Pseudomonas, Sedimentibacter, Clostridium, Desulfosporosinus, Desulfovibrio, Geosporobacter, Thermotalea and Methanosaeta, and the Pelobacteraceae steel (the following level classification the microorganism was not detected). Combined with the dynamic analysis of coupled chemical index and the relationship between microbiological indicators Found in sodium pyruvate, sodium lactate, sodium acetate processing, key functional dechlorinating microorganisms may include: Sedimentibacter, Clostridium, Pseudomonas. and other no dechlorination function of bacteria, especially iron reducing bacteria (Pelobacteraceae and Geosporobacter Thermotalea) may also with the dechlorination function between bacteria syntrophic relationships indirectly promote the reduction of PCP dechlorination. The stoichiometric equivalent electron transfer all reduction process of analysis, combined with the dynamic characteristics of high-throughput sequencing analysis revealed the function of microorganisms, can also speculate on the electron donor under the condition of enough (to ensure that the amount of electronic all required reduction of consumption), archaea Met light may by anosaeta transfer H2 into functional dechlorinating bacteria to stimulate the reduction of dechlorination. (2) and (1) part of the same system, further considering the effect of sulfate on. A set of exogenous sulfate, sulfate reducing conditions. It is found that the sulfate added, enhanced under conditions of sulfate reduction, the reduction rate degradation of most treatments of PCP decreased, but Fe (III) reduction was promoted. The electron donor, sodium pyruvate and lactate in promoting PCP degradation showed the best effect. At the same time, RDA analysis showed the same results with methanogenic conditions, namely reducing methane and iron reduction and dechlorination of PCP showed synergistic relationship, but the RDA results also further found that sulfate reduction and reductive dechlorination of PCP due to the mutual inhibition. High throughput sequencing results reveal the main microbial culture system for Pseudomonas, Sedimentibacter, Clostridium, Desulfosporosinus, Desulfovibrio, GeosporobacterThermotalea and Methanosae The TA and Pelobacteraceae classes (the classification below the level of microorganism was not detected). Under sulfate reducing conditions, the sodium pyruvate, sodium lactate, sodium acetate in treatment of functional microbial dechlorination key may include: Senenetibacter, Clostridiu, Pseudomonas; no other dechlorination function of bacteria, especially iron reducing bacteria (Pelobacteraceae and Geosporobacter Thermotalea) may also be through the dechlorination function and inter dependent relationship between bacteria indirectly promotes the reductive dechlorination of PCP; and the electron donor is sufficient, archaea Methanosaeta may pass through the H2 into functional dechlorinating bacteria to stimulate the dechlorination process. These conclusions and findings in the same methanogenic condition. Interestingly, the dynamic coupling relationship between chemical indicators and microbiological indicators also support further reducing conditions of sulfate and methane may exist under different conditions The mechanism that sulfate reducing bacteria (Desulfosporosinus, Desulfovibrio) may not only have the ability of sulfate reduction, with reduction of Fe (III) ability. In addition, adding sulfate inhibited the typical dechlorinating bacteria Dehalobacterium, iron reducing bacteria Pelobacteraceae, dechlorination of functional microbial Sedimentibacter and Pseudomonas growth, promoting sulfate reduction strains Desulfosporosinus and Desulfovibrio, the functional microbial dechlorination of Clostridium Geosporobbacter Thermotalea, iron reducing bacteria growth. Adding sulfate has no effect on the growth of methanogens, only delayed methanogenic process. (3) by adding exogenous coenzyme M (CoM) or 2- bromoethanesulfonic acid sodium (BES) were studied to promote reduction dechlorination behaviors of methane or inhibit methanogenic conditions. PCP found that the addition of CoM inhibited soil iron reducing bacteria growth, promote the production of methane The growth of bacteria, promote the reductive dechlorination of PCP; methanogenic inhibitor BES could effectively promote the growth of iron reducing bacteria, completely inhibited the growth of methanogens, inhibited the reductive dechlorination of PCP. High throughput sequencing results reveal the main microbial culture system for Pseudomonas, Sedimentibacter, Desulfosporosinus, Desulfovibrio, Geosporobacter Thermotalea and Methanosaeta and Pelobacteraceae classes (the classification below the level of microorganism was not detected). In this experiment, the key function of dechlorinating microorganisms may include: Sedimentibacter and Pseudomonas.CoM could effectively promote the growth of Sedimentibacte, inhibited the growth of Pseudomonas and BES in the treatment of the contrary; at the same time, BES and the CoM dechlorinating microorganisms on functional key (Sedimentibacter+ Pseudomonas) did not affect the total; in addition, archaea Methanosaeta flooding Water soil PCP reducing key microbial dechlorination process. Combined with the dynamic coupling relationship between chemical indicators and microbiological indicators can be speculated: because the soil methane production is promoted dechlorination process with PCP reduction, reduction and transformation BES therefore can inhibit methane production and inhibition of PCP.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X53
【相似文献】
相关期刊论文 前10条
1 崔松林,丁建华,武雨欣;影响鱼池水与泥体系硫酸盐还原因素的实验研究[J];水产学报;1991年03期
2 刘广民;张照韩;陈忠喜;魏利;任南琪;;利用反硝化抑制硫酸盐还原的连续流试验研究[J];中国给水排水;2007年05期
3 丁雷;祁佩时;黄华山;刘智晓;;微氧环境抑制硫酸盐还原反应作用研究[J];哈尔滨商业大学学报(自然科学版);2007年02期
4 郭夏丽;程小萍;郑平;梅玲玲;;磷化氢对硫酸盐还原的影响[J];浙江大学学报(农业与生命科学版);2008年01期
5 徐慧纬;张旭;杨姗姗;李广贺;;常压供氢体系电场强化硫酸盐还原生物-电化学效应研究[J];环境科学;2009年07期
6 冯颖,康勇,范福洲,孔琦;单质铁强化生物还原法处理硫酸盐废水[J];中国给水排水;2005年07期
7 赵阳国;任南琪;王爱杰;刘一威;;铁元素对硫酸盐还原过程的影响及微生物群落响应[J];中国环境科学;2007年02期
8 谭文捷;丁爱中;王金生;;硫酸盐还原条件下多环芳烃在土壤中的迁移转化[J];环境科学研究;2009年02期
9 王千红;金宝华;程晓玲;;水解酸化池中硫酸盐还原及抑制效果研究[J];供水技术;2011年01期
10 丁宁;黄进刚;闻岳;许越;周琪;;硝基苯对硫酸盐还原过程的影响[J];环境工程学报;2013年01期
相关会议论文 前4条
1 陈家辉;商U_;陈光浩;;以甲烷为单一碳源的脱氮及硫酸盐还原[A];2011中国环境科学学会学术年会论文集(第二卷)[C];2011年
2 丁海;姚素平;陈骏;;重金属离子对混合SRB菌群的硫酸盐还原速率抑制研究[A];中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C];2013年
3 田涛;张代钧;李玉莲;孙陶陶;何强;;重庆园博园龙景湖水体硫酸盐还原及氮化物和TOC的影响[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
4 赵本良;仇荣亮;刘金芩;黄雄飞;李清飞;王诗忠;石宁;;一株硫酸盐还原细菌的筛选及其功能研究[A];第十次全国环境微生物学术研讨会论文摘要集[C];2007年
相关重要报纸文章 前2条
1 萧莲;在高温季节应适当补施磷肥和氮肥[N];东方城乡报;2010年
2 倪永华;铁管道腐蚀之谜揭开[N];科技日报;2004年
相关博士学位论文 前9条
1 陈明翔;Desulfovibrio sp. CMX还原烟气脱硫脱硝络合溶液过程特性研究[D];大连理工大学;2015年
2 徐熙俊;微氧碳氮硫共脱除工艺的运行效能及数学模拟[D];哈尔滨工业大学;2015年
3 远野;废水碳氮硫污染物共脱除工艺调拉与生物硫回收参数优化[D];哈尔滨工业大学;2015年
4 周杰民;嗜盐嗜碱微生物法烟气处理的基础研究[D];中国科学院研究生院(过程工程研究所);2015年
5 康绪明;黄东海沉积物中还原无机硫的形态特征及影响因素研究[D];中国海洋大学;2015年
6 赵阳国;生态因子对硫酸盐还原系统中微生物群落动态影响的表征[D];哈尔滨工业大学;2006年
7 冯颖;硫酸盐还原菌与Fe~0协同处理含重金属酸性废水的研究[D];天津大学;2004年
8 李巍;废水同步生物脱氮除硫特性与效能研究[D];哈尔滨工业大学;2008年
9 夏芳芳;垃圾生物覆盖土对填埋气中H_2S的净化作用及机理研究[D];浙江大学;2014年
相关硕士学位论文 前10条
1 苗得露;高硫酸盐废水碳氮硫共脱除工艺的实验研究[D];河北科技大学;2014年
2 冯曦;厌氧条件下土壤典型氧化还原过程对五氯酚还原转化的影响[D];浙江大学;2017年
3 徐岩;基于遗传神经网络的产酸—硫酸盐还原系统建模研究[D];哈尔滨理工大学;2007年
4 乔佳妮;水稻土硫酸盐还原作用对多氯联苯消减的影响研究[D];浙江大学;2014年
5 侯丹丹;硫酸盐还原相反应器研究[D];西安工程大学;2011年
6 张璐;胶州湾沉积物中硫酸盐还原和铁异化还原的影响因素研究[D];中国海洋大学;2014年
7 毕建培;硫酸盐还原与反硝化脱硫工艺耦合及碳氮硫去除效能研究[D];哈尔滨工业大学;2009年
8 唐红玲;微生物烟气脱硫系统中硫酸盐生物还原过程研究[D];江南大学;2008年
9 刘一威;不同工艺条件下硫酸盐还原反应器微生物群落动态分析[D];哈尔滨工业大学;2006年
10 桂冠;脱硫肠状菌的培养及还原硫酸盐的试验研究[D];武汉理工大学;2013年
,本文编号:1438529
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1438529.html