脱硫吸收塔浆液理化性质与起泡相关性研究
本文关键词: 脱硫吸收塔 浆液 起泡 理化性质 出处:《安徽理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:论文针对燃煤电厂石灰石-石膏湿法烟气脱硫浆液起泡、影响脱硫系统的稳定和安全运行这一工程实际问题,在系统地分析阐述吸收塔浆液溢流的危害、起泡原理等的基础上,以马鞍山当涂县电厂一、二号脱硫吸收塔为研究目标,选取脱硫吸收塔浆液理化性质为研究对象,筛选出吸收塔浆液表面张力、硫酸根离子、以及金属离子砷、镉、铬、铁、铅、镍、金属离子总量等作为浆液理化性质典型代表,较系统地开展了浆液代表性理化指标对脱硫吸收塔浆液起泡的影响。论文分别分析研究了吸收塔浆液表面张力、硫酸根离子、镉、铬、铁、铅、镍以及吸收塔浆液金属离子总量与浆液起泡的相关关系,研究结论如下:(1)一、二号吸收塔中浆液起泡程度随着表面张力的减小而加剧,但一号塔表现出一定的波动性,浆液表面张力变化相对于消泡剂的添加量增加存在相对的滞后性;二号吸收塔中浆液起泡程度随着表面张力的减小而加剧,浆液表面张力变化相对于消泡剂的添加量表现出较明显的一致性。(2)吸收塔中浆液起泡程度随着浆液中S042-浓度的增大而加剧。(3)一、二号塔浆液加入消泡剂后砷含量的变化趋势与消泡剂添加量的变化趋势总体是一致的,宏观上表现出浆液中砷含量对起泡有影响,但一号塔一致性较明显,二号塔表现出一定的滞后性。(4)吸收塔浆液的镉含量与消泡剂的添加量无明显相关关系。(5)加入消泡剂后铬含量的变化趋势与消泡剂添加量的变化趋势总体是相反的,表现出负相关关系,加入消泡剂后浆液中铬的含量均维持在一定范围内,一号塔Cr含量在2-9mg/L之间波动,二号塔Cr含量在2-7mg/L之间波动。(6)吸收塔中浆液起泡程度随着铁含量的增大而减弱(7)吸收塔中浆液起泡程度的严重程度是随着镍含量的增大而加剧。(8)吸收塔中浆液起泡程度随着铅含量的增大而加剧(9)吸收塔中浆液起泡程度随着金属总量的增大而加剧。
[Abstract]:Aiming at the practical problems of limestone gypsum wet flue gas desulphurization slurry bubbling affecting the stability and safe operation of desulfurization system the paper systematically analyzes the harm of slurry overflow in absorption tower. On the basis of foaming principle, taking the No. 1 and No. 2 desulfurization absorption tower of Dangtu County Power Plant in Ma'anshan as the research object, the physicochemical properties of the slurry in the desulfurization and absorption tower were selected as the research object, and the surface tension of the slurry was screened out. Sulphate ions, as well as metal ions arsenic, cadmium, chromium, iron, lead, nickel, metal ions as the typical representative of the physical and chemical properties of the slurry. The effects of the representative physicochemical indexes of the slurry on the bubbling of the slurry in the desulfurization absorber were systematically carried out. The surface tension, sulfate ion, cadmium, chromium, iron and lead of the slurry in the absorber were analyzed and studied in this paper. The relationship between the total amount of metal ions in the size of nickel and the size of the absorber and the foam of the slurry. The conclusions are as follows: 1) 1) and 2) the degree of foaming of the slurry in the absorption tower increases with the decrease of the surface tension. However, the No. 1 tower shows certain volatility, and the change of surface tension of slurry is relative to the increase of defoaming agent content, and there is a relative lag between the change of surface tension and the addition of defoamer. The foaming degree of slurry in the No. 2 absorber increases with the decrease of surface tension. The change of surface tension of slurry shows obvious consistency compared with the amount of defoamer.) the foam degree of slurry in the absorber increases with the increase of S042- concentration in the slurry. The change trend of arsenic content after adding defoamer in No. 2 tower slurry is consistent with the change trend of defoamer content. Macroscopically, arsenic content in slurry has influence on foaming, but the consistency of No. 1 tower is obvious. The content of cadmium in the slurry of the absorber has no obvious correlation with the amount of defoamer. The change trend of chromium content after adding defoamer is opposite to that of defoamer addition. There is a negative correlation between Cr and Cr in the slurry after adding defoamer. The Cr content of No. 1 tower fluctuates between 2 and 9 mg / L. Cr content fluctuates from 2 to 7 mg / L in Tower 2) the foam degree of slurry in the absorption tower weakens with the increase of iron content. The degree of foaming of slurry in absorption tower is aggravated with the increase of nickel content.) the foaming degree of slurry in absorption tower increases with the increase of lead content. The foaming degree of the slurry in the absorption tower increases with the increase of the total metal content.
【学位授予单位】:安徽理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X773
【相似文献】
相关期刊论文 前10条
1 王国微;许建斌;李晓彬;;吸收塔浆液溢流原因分析及处理措施[J];河北电力技术;2011年06期
2 顾圣秋;俞利强;;石灰石-石膏湿法脱硫中吸收塔浆液泡沫过多问题探讨[J];上海电气技术;2010年04期
3 况延良;;脱硫吸收塔浆液品质恶化原因分析[J];东北电力技术;2013年08期
4 毕德刚;;吸收塔浆液密度测量方式及安装位置的优化[J];科技视界;2012年30期
5 邹向群;;吸收塔浆液起泡原因分析及消泡剂的选择[J];电力科技与环保;2012年04期
6 金东春;吴广生;朱昶;;湿法脱硫吸收塔浆液成分影响因素研究[J];浙江电力;2007年01期
7 程永新;;FGD系统中吸收塔浆液起泡溢流的原因分析及解决办法[J];电力科技与环保;2011年01期
8 武泉;韩成志;王强;;脱硫吸收塔浆液失效的原因与处理措施[J];节能与环保;2011年10期
9 潘维加;谢又成;周玲;严俊峰;;吸收塔浆液pH值控制系统的分析与改进[J];电站系统工程;2006年06期
10 武泉;韩成志;王强;;脱硫吸收塔浆液失效的原因分析与处理措施[J];同煤科技;2011年03期
相关会议论文 前1条
1 刘炜;;吸收塔浆液浓度对脱硫系统安全、经济运行的影响[A];全国火电大机组(600MW级)竞赛第十二届年会论文集(下册)[C];2008年
相关硕士学位论文 前3条
1 汤启栋;基于多变量的火力发电厂烟气脱硫PH值智能检测方法研究[D];西南石油大学;2015年
2 王瑶瑶;有机污染物对石灰石-石膏法脱硫塔浆液起泡影响研究[D];安徽理工大学;2017年
3 李军良;脱硫吸收塔浆液理化性质与起泡相关性研究[D];安徽理工大学;2017年
,本文编号:1467715
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1467715.html