烟气污染源排放过程监控系统研究与设计
发布时间:2018-02-22 18:58
本文关键词: 烟气污染源 过程监控 运行工况核查模型 支持向量机 治理效率预测模型 出处:《浙江理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着我国社会经济的持续发展和工业技术的不断提高,化石能源需求和环境污染之间的矛盾愈发突出,区域性大气复合污染持续加剧。针对严峻的大气污染形势,国家对环境保护、总量减排、污染治理等工作越来越重视,并大力开发了国控污染源在线监控系统,实现对企业污染源排放的在线监控。随着环境监测技术的发展,如何深化污染源在线监控系统,来取缔传统的现场检查污染治理设施运行状况的方式,防止污染排放过程中的设施无故停运、企业偷排、漏排等现象的发生,实现从“点末端监控”到“全过程监控”的转变,是目前亟待解决的问题。针对当前烟气污染源在线监控系统只监测污染排放结果,而不重视污染排放过程的监控现状,本文设计了一个烟气污染源排放过程监控系统。系统从烟气污染源的产生、治理、排放等环节进行监控,并通过对污染治理工艺过程参数和排污口监测数据进行挖掘分析,设计了运行工况智能核查规则模型和治理预测模型,实时的对现场端采集的监测数据进行决策分析,帮助环境管理部门实时、高效地监管企业的污染排放。本文主要研究内容包括以下几个方面:(1)设计了智能化的设施运行工况核查模型。利用企业生产工艺过程参数、治理环节的关键参数、排污口监测数据,建立了全面、准确的运行工况核查规则模型,用于判定生产设施和治理设施的运行状况和治理效果,及时发现污染排放过程中的问题,为排污收费、总量减排、移动执法等提供依据。(2)设计了一个基于偏最小二乘与支持向量机(PLS-SVM)的治理效率预测模型。利用偏最小二乘法(Partial Least Squares Regression,PLS)对影响烟气治理效率的过程因素进行分析,提取对治理效率影响较强的成分作为支持向量机的输入(Support Vector Machine,SVM)建立治理效率预测模型,为烟气排放监测仪器的可靠性和监测数据的真实性做判定依据。(3)设计了烟气污染源排放过程监控系统平台。包括系统需求分析、系统网络结构设计、系统架构设计、功能模块详细设计、数据库设计等。(4)系统实现及功能测试。系统功能模块进行代码实现,并部署相应的测试环境对系统进行严格的测试分析,确保系统的可靠性和完整性等。
[Abstract]:With the sustainable development of social economy and the continuous improvement of industrial technology, the contradiction between fossil energy demand and environmental pollution is becoming more and more prominent, and the regional atmospheric compound pollution continues to intensify. The state has paid more and more attention to the work of environmental protection, total emission reduction and pollution control, and has vigorously developed an on-line monitoring system for state-controlled pollution sources to realize on-line monitoring of emissions from enterprise pollution sources. With the development of environmental monitoring technology, How to deepen the pollution source online monitoring system in order to ban the traditional mode of on-site inspection of the operation status of pollution control facilities, and to prevent the facilities in the process of pollution discharge from stopping operation without any reason, the enterprises stealing the discharge, the leakage of the discharge, and so on. It is an urgent problem to realize the transition from "point end monitoring" to "whole process monitoring". This paper designs a monitoring system of flue gas pollution source discharge process. The system monitors the generation, treatment and discharge of flue gas pollution source, and analyzes the process parameters of pollution control process and the monitoring data of sewage outlet. The intelligent verification rule model and the governance prediction model are designed, which can help the environmental management department to make decision and analyze the monitoring data collected on the spot in real time. The main research contents of this paper include the following aspects: 1) designing an intelligent verification model of the operating conditions of the facilities. Using the production process parameters of the enterprises and the key parameters of the management links, the main contents of this paper are as follows: (1) the main contents of this paper are as follows: 1. The monitoring data of sewage discharge outlet have established a comprehensive and accurate operation condition verification rule model, which can be used to judge the operation status and control effect of production facilities and treatment facilities, to discover problems in the process of pollution discharge in time, and to charge for sewage discharge. Based on partial least squares and support vector machine (PLS-SVM), this paper designs a prediction model of governance efficiency based on partial least squares (PLS) and support vector machine (SVM). Partial Least Squares regulation (PLS) is used to analyze the process factors that affect the efficiency of flue gas treatment. The prediction model of governance efficiency is established by extracting components that have strong influence on governance efficiency as input of support vector machine (SVM). Based on the reliability of flue gas emission monitoring instrument and the authenticity of monitoring data, the platform of flue gas pollution source emission process monitoring system is designed, which includes system requirement analysis, system network structure design, system architecture design, etc. Function module design, database design, etc.) system implementation and function testing. The system function module is implemented by code, and the corresponding test environment is deployed to strictly test and analyze the system to ensure the reliability and integrity of the system.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X84;TP277
【参考文献】
相关期刊论文 前10条
1 李斌;邓煜;边禹铭;齐年哲;;基于T-S模糊神经网络的湿法脱硫效率预测[J];热力发电;2016年06期
2 黄进;林翎;高翔;朱廷钰;吴学成;付志明;郭e鴈,
本文编号:1525065
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1525065.html