ABR厌氧氨氧化反硝化协同脱氮除碳及微生物特性研究
本文选题:厌氧氨氧化 切入点:反硝化 出处:《苏州科技大学》2017年硕士论文 论文类型:学位论文
【摘要】:厌氧氨氧化反硝化协同脱氮除碳不仅能够提高厌氧氨氧化工艺对TN的去除效果,同时能够去除废水中的有机物,为实际低C/N比废水的处理提供了新思路。但反硝化菌与厌氧氨氧化菌之间各自最适的环境条件存在差异,在反应器同一区域难以较好的利用两者的协同作用。ABR反应器具有独特的生物相分离功能,能为反硝化菌和厌氧氨氧化菌造就各自适宜的生存环境,从而在不同隔室形成以反硝化和厌氧氨氧化为主导的反应区,减弱有机物对厌氧氨氧化菌的抑制。本文主要对ABR厌氧氨氧化反硝化协同脱氮除碳条件、协同体系受抑情况下效能恢复及其微生物特性以及协同体系对基质的耐受性能进行了研究。考察了进水COD浓度对ABR厌氧氨氧化反硝化协同脱氮除碳的影响;进水NO_2~--N和NH_4~+-N浓度组成对协同体系效能恢复影响,同时采用高通量测序分析了该阶段最优和初始协同脱氮除碳工况下的污泥样品;而后在此基础上继续考察了进水基质浓度对协同体系脱氮除碳效能影响,并且通过基质动力学考察了协同体系对基质的理论耐受程度。主要研究结论如下:(1)为明确厌氧氨氧化和反硝化协同脱氮除碳过程,采用ABR反应器控制进水氨氮和亚硝酸盐氮分别为75 mg·L~(-1)、110 mg·L~(-1),研究在不同进水COD浓度下脱氮除碳效果。结果表明,低浓度COD(㩳120 mg·L~(-1))TN和COD去除率分别在98%和79%以上,但在进水COD为180 mg·L~(-1)条件下,异养反硝化作用增强使得COD去除率可达到92%,Anammox受到限制致使总氮去除率降至70%。进水COD浓度的越高,厌氧氨氧化脱氮贡献率逐渐降低,而反硝化脱氮的贡献率持续增加。(2)为解决进水COD为180 mg·L~(-1)条件下协同体系脱氮效果不佳的问题,控制进水COD为180 mg·L~(-1)并且进水NO_2~--N和NH_4~+-N总量不变,逐渐增加NO_2~--N浓度并相应减少NH_4~+-N浓度,结果表明反硝化对TN贡献率先减少后增加,Anammox途径则先增加后减少。基于TN贡献率及TN去除量考虑,当进水基质浓度NO_2~--N、NH_4~+-N分别为140 mg·L~(-1)、40 mg·L~(-1)(阶段Ⅳ),反应器脱氮除碳效率最佳。并且反应器对NH_4~+-N、NO_2~--N、COD、TN去除率分别为99.7%、99.9%、99.7%、99.2%,此时反硝化对TN贡献率为63.1%,Anammox途径对TN贡献率为36.1%。进水中的COD由反硝化过程去除。为明确反应器水质处理效果与微生物之间的关系,对最优工况(阶段Ⅳ)和初始工况(阶段Ⅰ)下的生物泥样进行高通量测序,结果表明,ABR反应器脱氮微生物菌群较为丰富,其中变形菌门和浮霉菌门是涉及反硝化脱氮和厌氧氨氧化脱氮的两大菌门,变形菌门主要分布在ABR隔室1和隔室5,浮霉菌门主要分布在ABR的中间隔室(2、3、4);最优工况较之初始工况,变形菌门丰度低(9.46%~22%、22.81%~59.76%),浮霉菌门丰度高(6.59%~14.86%、2.63~3.49%);变形菌门主要包括Hyphomicrobium、Methyloversatilis、Denitratisoma、Limnobacter等属,占主导地位,而浮霉菌门次之,主要有Candidatus Brocadia、Candidatus Kuenenia属。同时,Chao、ACE、Shannon、Simpson等指数均表明最佳工况下ABR反应器B区微生物物种复杂程度低,富集程度高,说明某种物种逐渐富集,这与水质处理效果相一致。(3)为明确协同体系对基质的耐受性,在前期研究结果基础上控制进水基质在固定比例基础上增加进水浓度。结果表明,当进水基质浓度(COD、NO_2~--N、NH_4~+-N)(420、270、110)mg·L~(-1),反应器脱氮除碳效果良好,稳定运行时COD、NO_2~--N、NH_4~+-N去除率分别为93%、94.4%、93.2%以上,TN去除率为93%以上。随进水基质浓度提高,厌氧氨氧化途径对TN贡献率降低(43.08%、39.02%),反硝化脱氮贡献率增加(53.81%、57.14%)。然而当进水基质浓度为(420、270、110)mg·L~(-1)时,协同体系对NH_4~+-N去除效果较差。厌氧氨氧化对TN贡献率骤降(16.49%),反硝化对TN贡献率大幅提升至(82.07%)。此时,ABR反应器B区FA对Anammox菌产生抑制。通过动力学模型拟合发现Stover-Kincannon模型(R~2=0.937,TN;R~2=0.975,COD)较一级基质去除模型(R~2=0.314,TN;R~2=0.016,COD)更适合评价反应器对基质浓度的承受能力。Stover-Kincannon模型获得反应器对TN和COD去除的最大基质利用率分别为1.43 g·L~(-1)·d~(-1)和3.33 g·L~(-1)·d~(-1),饱和常数分别为1.2和3.79,相对于当前进水基质,协同体系理论上还有继续提升基质负荷的空间。
[Abstract]:The anammox denitrification nitrogen and carbon removal can not only improve the TN removal efficiency of anaerobic ammonia oxidation process, and organic substances in the wastewater is low, the actual C/N provides a new way than wastewater treatment. But there are differences between denitrification and anammox and their optimum environmental conditions in the reactor the same area to better use of the synergistic effect of.ABR reactor has unique biological separation function for denitrifying bacteria and anammox bacteria to create suitable for their own living environment, resulting in different compartments formed by denitrification and anammox reaction zone is dominant, inhibition of organic on the anammox bacteria. This paper focuses on the ABR of anammox denitrification nitrogen and carbon removal conditions, system of collaborative inhibition efficiency under restoration and microbial characteristics and coordination system on the matrix Tolerance properties were studied. The effects of influent COD concentration of ABR of anammox denitrification nitrogen and carbon removal effect; influent NO_2~--N and NH_4~+-N concentration of collaborative system efficiency recovery, while using high-throughput sequencing analysis of the optimal initial stage and synergistic removal of nitrogen and carbon sludge samples under the condition; then based on the effects of influent substrate concentration on carbon and nitrogen removal efficiency of cooperative system, and through the study of kinetics of the matrix on the matrix theory of collaborative system tolerance. The main conclusions are as follows: (1) clear anammox and denitrification synergistic carbon and nitrogen removal process, using ABR reactor and ammonia water control nitrite nitrogen was 75 mg - L~ (-1), 110 mg - L~ (-1), study on carbon and nitrogen removal effect in different influent COD concentration. The results showed that low concentration of COD (? 120 mg - L~ (-1) TN) and the removal rate of COD In 98% and 79%, but in the influent COD 180 mg - L~ (-1) under the condition of heterotrophic denitrification enhanced the COD removal rate can reach 92% Anammox, resulting in the total nitrogen removal rate is limited to 70%. of the influent COD concentration is higher, the anammox nitrogen contribution rate gradually decreased, while the anti denitrification contribution rate continued to increase. (2) to solve the influent COD 180 mg - L~ (-1) under the condition of system nitrogen removal problems, control water COD 180 mg - L~ (-1) and the total amount of NO_2~--N and NH_4~+-N unchanged, gradually increasing the concentration of NO_2~--N and decreased the concentration of NH_4~+-N. The results showed that the denitrification contribution to TN first decreased and then increased, Anammox pathway is first increased and then decreased. The contribution of TN and TN removal amount based on the consideration, when the influent substrate concentration NO_2~--N and NH_4~+-N were 140 mg - L~ (-1), 40 mg - L~ (-1) (order Duan), the carbon nitrogen removal efficiency removal reactor Good. And the reactor of NH_4~+-N, NO_2~--N, COD, TN removal rates were 99.7%, 99.9%, 99.7%, 99.2%, the denitrification and the contribution rate of TN is 63.1%, Anammox means the contribution rate of TN 36.1%. in the influent COD by denitrification removal. To define the relationship between water quality and microbial reactor the optimal conditions of (stage IV) and initial conditions (phase I) under biological mud samples by high-throughput sequencing, the results show that the ABR reactor denitrifying bacteria are more abundant, including Proteobacteria and planctomycetes is involved in two bacterial denitrification and anaerobic ammonium oxidation the Proteobacteria are mainly distributed in the ABR compartment 1 and 5 compartment, planctomycetes are mainly distributed in the middle of the ABR compartment (2,3,4); the optimal condition compared with the initial conditions, the low abundance of Proteobacteria (9.46%~22%, 22.81%~59.76%), high abundance of planctomycetes (6.59%~14.86%, 2.63~3.49%); deformation bacteria The door includes Hyphomicrobium, Methyloversatilis, Denitratisoma, Limnobacter and other genera, dominant, and planctomycetes of mainly Candidatus Brocadia, Candidatus Kuenenia. At the same time, Chao, ACE, Shannon, Simpson index indicated that the optimum operating conditions of ABR reactor B microbial species of low complexity, high enrichment. A species gradually enriched, and the water treatment effect is consistent. (3) to clear coordination system on matrix tolerance control, influent substrate water concentration increase in fixed proportion on the basis of the previous research results in the foundation. The results show that when the influent substrate concentration (COD, NO_2~--N, NH_4~+-N) (420270110) mg L~ (-1), nitrogen and carbon removal effect is good and stable operation of the reactor, COD, NO_2~--N, NH_4~+-N removal rates were 93%, 94.4%, 93.2%, TN removal rate is more than 93%. With the increase of influent substrate concentration, anaerobic Ammonia oxidation pathway of TN reduce the contribution rate (43.08%, 39.02%), denitrification contribution rate increased (53.81%, 57.14%). However, when the influent substrate concentration (420270110 mg) - L~ (-1), collaborative system on the NH_4~+-N removal effect is poor. The anaerobic ammonia oxidation rate dropped to TN contribution (16.49%). Denitrification in the contribution rate of TN increased to (82.07%). At this time, ABR reactor B FA to inhibit Anammox bacteria. By fitting the kinetic model Stover-Kincannon model (R~2=0.937, TN; R~2=0.975, COD) is a matrix removal model (R~2=0.314, TN; R~2=0.016, COD) is more suitable for the bearing capability of.Stover-Kincannon model the substrate concentration evaluation reactor maximum substrate removal reactor for TN and COD utilization rate were 1.43 G - L~ (-1) - d~ (-1) and 3.33 g L~ (-1) - d~ (-1), saturation constants were 1.2 and 3.79, compared with the current water matrix, system theory on There is also room to continue to increase the matrix load.
【学位授予单位】:苏州科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703;X172
【相似文献】
相关期刊论文 前10条
1 郑平,胡宝兰;厌氧氨氧化菌混培物生长及代谢动力学研究[J];生物工程学报;2001年02期
2 连彦峰,苏金浩;厌氧氨氧化过程的研究进展及应用前景[J];中国科技信息;2005年14期
3 祖波;张代钧;白玉华;;厌氧氨氧化菌特性及其在生物脱氮中的应用[J];微生物学通报;2006年01期
4 祖波;张代钧;张萍;白玉华;;影响厌氧氨氧化与甲烷化反硝化耦合的因素[J];应用与环境生物学报;2007年03期
5 秦玉洁;周少奇;;厌氧氨氧化菌的研究进展[J];生态学杂志;2007年11期
6 洪义国;李猛;顾继东;;海洋氮循环中细菌的厌氧氨氧化[J];微生物学报;2009年03期
7 白王军;黄波;李梦侠;;厌氧氨氧化脱氮及影响因素研究[J];科技信息;2009年03期
8 陈婷婷;郑平;胡宝兰;;厌氧氨氧化菌的物种多样性与生态分布[J];应用生态学报;2009年05期
9 张蕾;郑平;;厌氧氨氧化菌的代谢[J];科技通报;2010年06期
10 唐崇俭;郑平;陈建伟;;流加菌种对厌氧氨氧化工艺的影响[J];生物工程学报;2011年01期
相关会议论文 前10条
1 路青;张振贤;付秋爽;徐伟涛;党酉胜;;厌氧氨氧化工艺研究进展[A];上海(第二届)水业热点论坛论文集[C];2010年
2 林琳;;含氨废水生物处理-厌氧氨氧化技术启动研究进展[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
3 鲍林林;李刚强;李冬;;常温低基质浓度下磷酸盐对厌氧氨氧化过程的影响[A];河南省化学会2012年学术年会论文摘要集[C];2012年
4 姜昕;马鸣超;李俊;钟佐q,
本文编号:1600729
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1600729.html