木薯渣在生物絮团处理养殖废水技术中的应用性研究
本文选题:酶解木薯渣 切入点:生物絮团 出处:《广西大学》2017年硕士论文 论文类型:学位论文
【摘要】:为解决目前生物絮团技术碳源成本过高以及由于木薯渣处理困难造成的环境问题,本文探究了酶解木薯渣作为生物絮团碳源的可行性。首先本文优化了酶解木薯渣的工艺流程,然后将最佳反应条件下得到的酶解产物与原木薯渣、蔗糖作为三种不同的碳源添加进南美白对虾养殖水体中,最后通过水质分析,判断蔗糖、木薯渣和酶解木薯渣三种碳源对水质影响的区别,并利用高通量测序技术对生物絮团和对虾肠道中的微生物群落结构进行解析。本研究对高效利用木薯渣,解决其造成的环境问题具有重要意义,也为解释生物絮团的作用机理提供了理论参考。主要结果归纳如下:(1)确定了纤维素酶、糖化酶和α-淀粉酶单独水解木薯渣的最佳pH、反应温度、酶添加量、固液比和最佳反应时间。(2)确定了当纤维素酶、糖化酶和α-淀粉酶添加量分别为8000 U/g木薯渣、4000 U/g木薯渣和640 U/g木薯渣,反应时间分别为48 h、10 h和40 h时,三种酶复合作用的最佳效果比单一酶种最佳的作用效果提高了97.92%,同时该结果明显高于理论上三种酶解效果之和。(3)取预处理过的木薯渣,分别调节固液比为1/15、1/10、1/5,并在不同条件下依次添加七种生物酶,最终得到的还原糖的浓度分别34.75 mg/mL、50.55 mg/mL、92.32mg/mL和,相较于未经处理的木薯渣,还原糖提取率提高了 20倍。(4)在周期为30天的养殖实验中,分别将蔗糖、木薯渣、酶解木薯渣添加到对虾养殖桶中,水质分析表明,蔗糖组的氨氮浓度(0.16 mg/L)和亚硝态氮浓度(0.13 mg/L)相较于木薯渣组分别降低了 23.8%和27.8%,酶解木薯渣组的氨氮浓度(0.19 mg/L)和亚硝态氮浓度(0.16 m/L)分别降低了 9.5%和12.5%,TSS(总固体悬浮物浓度)和BFV(生物絮团体积浓度)水平最高的组为酶解木薯渣组。蔗糖在控制氨氮、亚硝态氮两种污染指标方面效果最好,其次是酶解木薯渣,但是在生物絮团的形成方面,酶解木薯渣的处理效果最好。(5)高通量测序结果表明,生物絮团中的微生物多样性远高于对虾肠道,BFT3(碳源为酶解木薯渣的生物絮团)中异养细菌的相对丰度分别比BFT1(碳源为蔗糖的生物絮团)和BFT2(碳源为木薯渣的生物絮团)高了 20.70%和和1.19%,同时其益生菌的相对丰度比BFT1和BFT2高了 11.47%和61.60%,来自于BFT3水环境培养的对虾肠道样品中,致病菌所占的比例低于其他两组,说明了酶解木薯渣的添加提高了益生菌和异养细菌并且抑制了致病菌来降低对虾的疾病风险。
[Abstract]:In order to solve the environmental problems caused by the high cost of carbon source and the difficulty of cassava residue treatment, the feasibility of enzymatic cassava residue as a carbon source of biological floc was explored. Firstly, the technological process of enzymatic cassava residue was optimized. The enzymatic hydrolysis products and cassava dregs, sucrose as three different carbon sources were added to the culture water of Penaeus vannamei under the best reaction conditions. Finally, the sucrose was judged by the analysis of water quality. The effects of cassava residue and enzymatic cassava residue on water quality were studied. The microbial community structure in biological flocs and shrimp intestines was analyzed by high-throughput sequencing. It is of great significance to solve the environmental problems caused by it, and also provides a theoretical reference for explaining the action mechanism of biological flocs. The main results are summarized as follows: 1) Cellulase is determined. The optimum pH, reaction temperature, enzyme addition, solid-liquid ratio and optimum reaction time of cassava residue hydrolyzed separately by Glucoamylase and 伪 -amylase were determined. The dosages of Glucoamylase and 伪 -amylase were 8 000 U / g cassava dregs and 640 U / g cassava dregs respectively, and the reaction time was 48 h / 10 h and 40 h respectively. The optimum effect of the three enzymes was 97.922.The result was significantly higher than that of cassava dregs pretreated with the sum of the three enzymatic hydrolysis effects in theory, and the optimum effect of the three enzymes was higher than that of the single enzyme, and the result was significantly higher than that of the pre-treated cassava dregs. The ratio of solid to liquid was adjusted to 1 / 15 / 1 / 10 / 1 / 5, and seven kinds of biological enzymes were added under different conditions, and the final concentration of reducing sugar was 34.75 mg / mL, 50.55 mg / mL and 92.32 mg / mL, respectively, compared with the untreated cassava residue. The extraction rate of reducing sugar was increased by 20 times. 4) in the culture experiment with a period of 30 days, sucrose, cassava residue and cassava residue were added to the shrimp culture barrel respectively. The water quality was analyzed. The ammonia concentration of sucrose group (0.16 mg / L) and nitrite concentration (0.13 mg / L) decreased by 23.8% and 27.8 respectively compared with cassava dregs, the ammonia concentration of enzymatic cassava dregs was 0.19 mg / L and nitrite concentration was 0.16 mg / L and 9.5% and 12.5 mg / L, respectively. The highest concentration of floatation) and BFV (volume concentration of biological flocs) were obtained from cassava dregs by enzymatic hydrolysis. Sucrose was used to control ammonia nitrogen. The effect of nitrite nitrogen on two pollution indexes was the best, followed by enzymatic cassava residue, but in the formation of biological flocs, the treatment effect of enzymatic cassava residue was the best. The microbial diversity in the biological flocs is much higher than that in the shrimp intestinal tract BFT3 (where the carbon source is enzymatic cassava residue) and the relative abundance of heterotrophic bacteria is higher than that of BFT1 (carbon source is sucrose biological flocs) and BFT2 (carbon source is cassava residue). At the same time, the relative abundance of probiotics was 11.47% and 61.60 higher than that of BFT1 and BFT2. The proportion of pathogenic bacteria was lower than that of the other two groups, which indicated that the addition of cassava residue could increase probiotics and heterotrophic bacteria and inhibit pathogenic bacteria to reduce the risk of shrimp disease.
【学位授予单位】:广西大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X714
【参考文献】
相关期刊论文 前10条
1 熊素敏,左秀凤,朱永义;稻壳中纤维素、半纤维素和木质素的测定[J];粮食与饲料工业;2005年08期
2 浦跃武;刘坚;;木薯渣厌氧发酵制取沼气的研究[J];安徽农业科学;2009年29期
3 方诩;秦玉琪;李雪芝;王禄山;汪天虹;朱明田;曲音波;;纤维素酶与木质纤维素生物降解转化的研究进展[J];生物工程学报;2010年07期
4 罗国芝;朱泽闻;潘云峰;鲁璐;谭洪新;;生物絮凝技术在水产养殖中的应用[J];中国水产;2010年02期
5 方佳;濮文辉;张慧坚;;国内外木薯产业发展近况[J];中国农学通报;2010年16期
6 容元平;廖兰;伍时华;叶云;李克林;;木薯渣残余淀粉提取与发酵酒精工艺研究[J];安徽农业科学;2010年06期
7 夏耘;郁二蒙;谢骏;余德光;王广军;李志斐;王海英;龚望宝;;基于PCR-DGGE技术分析生物絮团的细菌群落结构[J];水产学报;2012年10期
8 黄萍;齐仁立;;木薯渣作为饲料资源的开发与利用[J];四川畜牧兽医;2012年12期
9 黄春芳;朱玉连;莫虎明;孔巧平;古碧;周敬红;;不同预处理方法对木薯渣水解效果影响的研究[J];广西大学学报(自然科学版);2013年02期
10 杨婷;廖美德;刘Pr嘉;贺玉广;吴杰良;;木薯渣混菌发酵替代麸皮饲料的研究[J];饲料博览;2014年11期
相关博士学位论文 前1条
1 徐武杰;生物絮团在对虾零水交换养殖系统中功能效应的研究与应用[D];中国海洋大学;2014年
相关硕士学位论文 前6条
1 陈倩伶;生物絮团技术应用于对虾养殖水质调控[D];广西大学;2015年
2 傅超英;木薯渣纤维素和淀粉的糖化及其发酵丁醇的研究[D];华南理工大学;2014年
3 赵大虎;添加不同碳源对生物絮团组分和凡纳滨对虾生理健康、生长的影响[D];中国海洋大学;2013年
4 龚信芳;木薯渣异步糖化发酵和同步糖化发酵产乙醇的研究[D];华南理工大学;2011年
5 刘传都;利用混合菌固体发酵木薯渣生产菌体蛋白饲料的研究[D];华中农业大学;2009年
6 赖翠华;木薯淀粉渣制取单细胞蛋白饲料的实验研究[D];广西大学;2006年
,本文编号:1603842
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1603842.html