钢渣改性处理有机废水和重金属废水研究
本文选题:钢渣 + 有机废水 ; 参考:《西华大学》2017年硕士论文
【摘要】:有机物废水和重金属废水是我国在工业化进程中所面临的问题,并且在环境中不能被有效降解,若不及时妥善处理,直接排出,会对环境和人体造成严重危害。通常处理这类废水常用的材料价格较高,而钢渣作为炼钢过程中排出的固体废弃物,具有一定孔隙和比表面,且价廉易购,具备可以作为处理材料的基础,因此本研究选用钢渣为原料,进行有机废水和重金属废水处理的研究。本论文选用转炉钢渣为原料,通过对比钢渣改性前后对有机废水苯酚废水和重金属Cr~(3+)、Pb~(2+)废水的处理效果,寻找最佳处理条件,利用XRF、BET、SEM等表征手段对钢渣的化学成分、性质和结构特征进行分析,探究其反应机理,主要结论如下:1.通过对比未改性钢渣、酸改性钢渣钢渣、碱改性钢渣在不同反应时间、钢渣投加量、溶液pH值条件下对去除苯酚影响,分别得到其最佳实验条件。常温下,苯酚废水浓度为40mg/l时,振荡器转速为150r/min时,100-200目未改性钢渣、酸改性钢渣钢渣、碱改性钢渣反应时间分别为60min、70min、60min,各性质钢渣投加量分别为8g/l、6g/l、10g/l,溶液pH值分别为pH=4、pH值=10、pH值=9时,为各个性质钢渣处理的最佳实验条件。2.通过对比未改性钢渣、酸改性钢渣钢渣、碱改性钢渣在不同反应时间、钢渣投加量、溶液pH值条件下对重金属废水Cr~(3+)、Pb~(2+)的去除影响,得到各自其最佳实验条件。在常温下,当重金属离子浓度为20mg/l,振荡器转速为200r/min时,处理Cr~(3+)废水时,100-200目未改性钢渣、酸改性钢渣钢渣、碱改性钢渣反应时间分别为50min、40min、50min,钢渣投加量分别为3g/l、1.8g/l、2.6g/l,溶液pH值3时,为各个性质钢渣最佳实验条件;处理Pb~(2+)废水时,100-200目未改性钢渣、酸改性钢渣钢渣、碱改性钢渣反应时间都为100min,钢渣投加量都为2g/l,溶液pH值3时,为各个性质钢渣最佳实验条件。3.未改性钢渣去除苯酚效果最好,在最佳实验条件下,苯酚去除率可达42%;酸改性钢渣去除Cr~(3+)、Pb~(2+)效果最好,在最佳实验条件下,对Cr~(3+)去除率可达99.2%,对Pb~(2+)去除率达98%。4.未改性钢渣处理苯酚废水更符合二级动力学方程,酸、碱改性钢渣符合一级动力学方程;钢渣处理含铬离子、铅离子废水吸附过程更符合Langmuir等温吸附模型,钢渣处理重金属废水吸附过程主要是吸附作用和化学反应作用。
[Abstract]:Organic wastewater and heavy metal wastewater are the problems that our country faces in the process of industrialization, and can not be effectively degraded in the environment. If it is not properly treated in time and discharged directly, it will cause serious harm to the environment and human body. The materials commonly used to treat such waste water are usually expensive, while steel slag, as a solid waste discharged in the steelmaking process, has a certain porosity and specific surface, and is cheap and easy to buy, and has the basis for treating materials. Therefore, steel slag is used as raw material to treat organic wastewater and heavy metal wastewater. In this paper, the converter steel slag was selected as raw material, and the chemical composition of steel slag was characterized by XRF BETSEM, by comparing the treatment effect of phenol wastewater and heavy metal Cr~(3 PbPb2 wastewater before and after modification of steel slag, and finding the best treatment conditions, and using XRFBETSEM to characterize the chemical composition of steel slag. The main conclusions are as follows: 1. By comparing the influence of unmodified steel slag, acid modified steel slag steel slag, alkali modified steel slag on phenol removal under different reaction time, steel slag dosage and pH value of solution, the optimum experimental conditions were obtained respectively. At room temperature, when the concentration of phenol wastewater is 40mg/l, when the speed of oscillator is 150r/min, the reaction time of unmodified steel slag, acid modified steel slag and alkali modified steel slag are 60min / 70min / 60min, respectively. The dosage of each kind of steel slag is 8g / L ~ 6g / L ~ (-1) 10g / L, the pH value of solution is pH ~ (4) pH = 10 ~ (-1), pH = 9, respectively. It is the best experimental condition for the treatment of steel slag with various properties. By comparing the effects of unmodified steel slag, acid modified steel slag and alkali modified steel slag on the removal of heavy metal wastewater under different reaction time, dosage of steel slag and pH value of solution, the optimum experimental conditions were obtained. At normal temperature, when the concentration of heavy metal ion is 20mg / l, the rotation speed of oscillator is 200r/min, the reaction time of unmodified steel slag, acid modified steel slag and alkali modified steel slag are 50 min ~ 40 min ~ 50 min, respectively, the dosage of steel slag is 3 g / L ~ (1.8 g / L) 路L ~ (-1) g / l, the pH value of solution is 3, respectively. When treating Pb~(2 wastewater, the reaction time of unmodified steel slag, acid modified steel slag and alkali modified steel slag is 100 min, the dosage of steel slag is 2 g / l, and the pH value of solution is 3. It is the best experimental condition of steel slag with various properties. The removal rate of phenol by unmodified steel slag is the best, and the removal rate of phenol can reach 42% under the optimum experimental conditions, and the removal rate of Cr~(3 and PbPbPbC2 is the best under the best experimental conditions. Under the optimum experimental conditions, the removal rate of Cr~(3) can reach 99.2%, and the removal rate of Pb~(2 can reach 98.4%. The treatment of phenol wastewater with unmodified steel slag conforms to the second-order kinetic equation, the acid and alkali modified steel slag accords with the first-order kinetic equation, and the adsorption process of lead ion wastewater is more consistent with the Langmuir isotherm adsorption model. The adsorption process of heavy metal wastewater treated by steel slag mainly consists of adsorption and chemical reaction.
【学位授予单位】:西华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703
【参考文献】
相关期刊论文 前10条
1 李硕;王然登;彭永臻;;生物除磷颗粒污泥对Zn~(2+)的去除特性研究[J];水处理技术;2017年02期
2 蔡静;丁文明;王艳敏;;改性木屑对铜离子的吸附性能[J];环境工程学报;2016年12期
3 陈丽珠;盛德洋;申露威;钟惠舟;;纳滤膜去除饮用水中多种重金属的研究[J];给水排水;2016年11期
4 周桑扬;杨凯;吴晓芙;冀泽华;;人工湿地植物去除废水中重金属的作用机制研究进展[J];湿地科学;2016年05期
5 卫新来;鲍孝莹;吴克;郑朝婷;;改性棉铃壳吸附含铬废水研究[J];水处理技术;2016年08期
6 郭睿;王超;杨江月;程敏;刘爱玉;;螯合絮凝剂EPPCX的制备及对Pb~(2+)、Cu~(2+)捕集性能研究[J];环境科学学报;2017年04期
7 殷云皓;张志刚;张平;安立超;;钢渣对铅蓄电池厂含铅模拟废水动态吸附特性[J];水处理技术;2016年05期
8 杨合;王振;韩冲;薛向欣;;钢渣非均相类Fenton反应降解亚甲基蓝的研究[J];东北大学学报(自然科学版);2016年03期
9 吴亚琪;徐畅;赵越;严群;;硅酸钙-壳聚糖聚合物制备及其对重金属废水的吸附特性[J];环境化学;2016年03期
10 刘晨阳;刘锋;黄天寅;;汽车生产废水综合处理工程实践[J];水处理技术;2016年03期
相关博士学位论文 前3条
1 杨健;含铬钢渣制备微晶玻璃及一步热处理研究[D];北京科技大学;2016年
2 代文彬;钢渣热态改质的工艺、装备及制备微晶玻璃的研究[D];北京科技大学;2016年
3 李兴发;新型铁基双金属类芬顿催化剂的研制及在染料去除上的应用[D];浙江大学;2015年
相关硕士学位论文 前10条
1 王平;芬顿法应用于染料工业园区废水深度处理的技术研究与评价[D];北京化工大学;2015年
2 董姣;臭氧/微电解工艺对印染废水的处理效能研究[D];哈尔滨工业大学;2015年
3 陈聪;新型镍电极电芬顿法预处理印染废水效能研究[D];哈尔滨工业大学;2015年
4 秦乐乐;基于芬顿原理的高级氧化技术去除垃圾渗滤液中难降解有机物的研究[D];北京交通大学;2015年
5 李锦;钢渣处理酸性含铜镍电镀模拟废水的性能研究[D];南京理工大学;2014年
6 夏娜娜;改性钢渣对海水中汞和砷的吸附性能研究[D];中国海洋大学;2013年
7 孙翼虎;无机絮凝剂+Fenton工艺深度处理中晚期垃圾渗滤液的研究[D];湖南大学;2013年
8 李明喜;整车厂涂装车间废水处理工艺及应用研究[D];吉林大学;2013年
9 温建;钢渣的活性激发及资源化利用[D];中南大学;2013年
10 惠咏薇;利用钢渣去除水中镉的研究[D];南京理工大学;2013年
,本文编号:1813624
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1813624.html