当前位置:主页 > 社科论文 > 生态环境论文 >

室内外空气cVMS和BTEX被动监测方法研究与应用

发布时间:2018-05-05 07:49

  本文选题:被动采样 + 环状挥发性甲基硅氧烷 ; 参考:《大连海事大学》2017年硕士论文


【摘要】:本研究选择cVMS包括八甲基环四硅氧烷(D4),十甲基环五硅氧烷(D5),十二甲基环六硅氧烷(D6)和BTEX即苯系物包括苯乙烯,甲苯,乙基苯,间对-二甲苯,1,3,5-三甲基苯和苯作为目标物,采用内部填有200mg Tenax TA吸附剂的热脱附不锈钢管(TD管)作为被动采样器,建立了 TD管(Tenax TA)被动采样方法体系,cVMS和BTEX检出限和定量限(μg tube-1)范围分别为:4.49E-07至3.43E-06 和 1.50E-06 至 1.14E-05;被动吸附速率 R(mL/min)范围为:0.28-1.46;t25和t95(天)范围分别为10-51和101-532;采样效率(计算值/理论值)范围为:0.5-2.78;储存样品检测值和储存时间之间关系曲线符合Boltzmann方程,R2值在0.92-0.98之间。采用主动和被动方法监测家庭、办公和室外环境空气中cVMS和BTEX浓度,得到主动与被动浓度关系式为y=0.8033x+0.156,R2为0.8893,被动与主动监测方法匹配度达到89%。利用被动监测方法分别对Li家和Xiong家两个家庭及其家用轿车、停车场、和家庭室外,以及校园内的男寝、女寝、学生办公室、教师办公室、校园室外环境和海大实习船船员室、主机舱、辅机舱环境空气中的cVMS和BTEX进行了监测。在家庭环境中cVMS,Xiong家的浓度高于Li家,其中D5浓度达到1个数量级,而BTEX,Xiong家的浓度明显低于Li家,除苯乙烯和苯外其余目标物浓度均低于1个数量级;在校园环境中cVMS,女生寝室浓度均高于其他采样点,其中D5高出室外192倍,对于BTEX,男生寝室均高于其他采样点,其中甲苯是室外的22.86倍;在船舱环境中cVMS,辅机舱内D4和D5浓度高于主机舱高于船员室,而船员室D6浓度高于辅机舱高于主机舱,对于BTEX,主机舱浓度均为最高,其次是船员室,最后是辅机舱。通过比值方法分析,个人护理品、涂料及溶剂的使用对环境中cVMS浓度具有一定的贡献作用,而机动车和氧化燃烧排放对BTEX有较大贡献。根据监测所得目标物浓度,对D5、苯乙烯、甲苯、乙基苯、间,对-二甲苯和苯在室内环境中的非致癌风险评估中,发现只有主机舱中苯的HQ值大于1,而对苯的致癌风险评估中,在Li-客厅、Xiong-客厅、男寝、女寝、船员室、办公室、主机舱和辅机舱几个室内监测点其Risk值均大于1E-06。主机舱内苯对人体健康存在潜在的非致癌风险,研究室内空气环境中苯对人体健康均存在潜在的致癌风险。
[Abstract]:In this study, cVMS including octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecylcyclohexasiloxane, dodecyl cyclohexasiloxane D6) and BTEX were selected as target compounds, that is, benzene series including styrene, toluene, ethyl benzene, p-xylene 1, 3-trimethyl benzene and benzene. The thermal desorption stainless steel tube TD tube filled with 200mg Tenax TA adsorbent was used as passive sampler. The detection limits and quantification limits (渭 g tube-1) of the passive sampling system of tenax TAax were established. The detection limits and quantification limits (渭 g tube-1) were: 1: 4.49E-07 to 3.43E-06 and 1.50E-06 to 1.14E-05; the range of passive adsorption rate was 0.28-1.46t25 and 101-532respectively; and the sampling efficiency was 101-532.The range of passive adsorption rate was 0.28-1.46t25 and 101-532respectively. The range of calculated value / theoretical value is in the range of: 0.5-2.78, and the relationship curve between the detection value and storage time of the stored sample is in accordance with the Boltzmann equation with R2 value of 0.92-0.98. Active and passive methods were used to monitor the concentration of cVMS and BTEX in the air of home, office and outdoor environment. The relationship between active and passive concentration was obtained as follows: YYI 0.8033x 0.156C R2 = 0.8893, and the match degree of passive monitoring method and active monitoring method reached 89893. Two families, Li and Xiong families, as well as their cars, parking lots and outdoor homes, as well as the male, female, student's offices, teachers' offices, outdoor environment on campus and the crew room of Haida Internship were studied by passive monitoring method, respectively. Main engine cabin, auxiliary engine room ambient air cVMS and BTEX were monitored. In the family environment, the concentration of cVMS-Xiong was higher than that of Li, and the concentration of D5 was 1 order of magnitude, while the concentration of BTEXX Xiong was obviously lower than that of Li, and the concentration of all the target compounds except styrene and benzene was lower than 1 order of magnitude. In the campus environment, the concentration of female dormitory was higher than that of other sampling points, and the concentration of D5 was 192 times higher than that of outdoor. For BTEX, boys' dormitory was higher than other sampling points, and toluene was 22.86 times of outdoor. In the cabin environment, the concentration of D4 and D5 in auxiliary cabin is higher than that in main cabin, while the concentration of D6 in crew room is higher than that in engine room. For BTEX, the concentration of main engine room is the highest, the next is crew room, and the last is auxiliary cabin. By ratio analysis, the use of personal care products, paints and solvents contributed to the concentration of cVMS in the environment, while motor vehicle and oxidative combustion emissions contributed significantly to BTEX. Based on the monitored target concentration, in the non-carcinogenic risk assessment of p-xylene, p-xylene and benzene in the indoor environment, it was found that only the HQ value of benzene in the mainframe cabin was greater than 1, and that in the carcinogenic risk assessment of p-benzene, only p-xylene and p-xylene were found in the risk assessment of benzene carcinogenesis. The Risk values of several indoor monitoring points in Li-sitting room, male, female, crew room, office, mainframe cabin and auxiliary engine room are all greater than 1E-06. Benzene in main engine room has potential non-carcinogenic risk to human health, and benzene in indoor air environment has potential carcinogenic risk to human health.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X831

【相似文献】

相关期刊论文 前10条

1 范亚维;周启星;;BTEX的环境行为与生态毒理[J];生态学杂志;2008年04期

2 张俊刚;王跃思;吴方X;王珊;;北京市大气中BTEX工作日与非工作日的浓度变化[J];环境化学;2009年01期

3 任文杰;周启星;王美娥;;BTEX在土壤中的环境行为研究进展[J];生态学杂志;2009年08期

4 ;Remediation of BTEX-Contaminated Groundwater by Air Sparging:A Simulation Study[J];地学前缘;2009年S1期

5 孙杰;王跃思;吴方X;;北京市BTEX的污染现状及变化规律分析[J];环境科学;2011年12期

6 郭幻;姚俊;蔡珉敏;王静伟;;BTEX混合物降解菌株的筛选及降解性能[J];石河子大学学报(自然科学版);2012年04期

7 赵珂;刘国;薛志钢;支国瑞;付建;彭良梅;;大气BTEX的时空分布与反应特征及来源研究进展[J];工业安全与环保;2013年04期

8 苏燕;孙超;赵勇胜;周睿;王霄;生贺;;BTEX污染含水层中氧化还原环境的空间变化[J];土木建筑与环境工程;2014年02期

9 王萍;周启星;;BTEX污染环境的修复机理与技术研究进展[J];生态学杂志;2009年02期

10 孙威;赵勇胜;杨玲;马百文;;过硫酸盐活化技术处理地下水中的BTEX及其动力学[J];安徽农业大学学报;2012年03期

相关会议论文 前7条

1 韩丽;邓利群;何敏;冯小琼;王幸锐;;成都市大气中BTEX的污染特征研究[A];2014中国环境科学学会学术年会(第六章)[C];2014年

2 王萍;周启星;;BTEX对水生植物金钱草的生长及生理生态效应研究[A];第五届全国环境化学大会摘要集[C];2009年

3 李爽;白鸽;沈学优;;杭州市居民家庭空气中的BTEX污染[A];第五届全国环境化学大会摘要集[C];2009年

4 Hui Huang;Guiping Wu;Chuan Yi;;Studying the Adsorption Performance in Binding of BTEX in the Air by Activated Carbon[A];中国材料大会2012第4分会场:环境功能材料论文集[C];2012年

5 曾冬辉;宾丽英;谢光炎;;BTEX的微生物降解机制及研究进展[A];2013中国环境科学学会学术年会论文集(第五卷)[C];2013年

6 秦俊杰;尹冬勤;黄跃飞;;基于PAT修复物理试验的BTEX迁移转化模拟及过程控制思路[A];第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集[C];2011年

7 杨姝倩;李法云;马溪平;谯兴国;张营;李素玉;;石油污染土壤中微生物对BTEX的降解能力研究[A];第十次全国环境微生物学术研讨会论文摘要集[C];2007年

相关博士学位论文 前2条

1 刘秀丽;地下水中BTEX的迁移规律及其原位生物修复技术研究[D];天津大学;2010年

2 马燕;河流渗滤系统中BTEX污染去除机理研究[D];中国地质大学(北京);2011年

相关硕士学位论文 前10条

1 栾晓新;室内外空气cVMS和BTEX被动监测方法研究与应用[D];大连海事大学;2017年

2 胡桂全;BTEX在含水层中迁移转化规律研究[D];吉林大学;2009年

3 黄方圆;麦饭石填料强化好氧生物去除地下水中BTEX的研究[D];中国地质大学(北京);2013年

4 孙本山;可吸附生物反应墙修复地下水中BTEX[D];合肥工业大学;2014年

5 李潘;苯系物(BTEX)在新疆干旱区土壤中的环境化学行为及其影响因素研究[D];新疆大学;2014年

6 张倩;高盐条件BTEX降解菌群多样性、降解基因型及相容性溶质分析[D];华东理工大学;2012年

7 孙文静;BTEX降解菌的驯化及其好氧降解规律的研究[D];天津大学;2009年

8 赵妍;地下环境中BTEX的挥发特性及其对AS影响研究[D];吉林大学;2009年

9 李敬杰;微生物异化还原Fe(III)耦合氧化BTEX研究[D];吉林大学;2012年

10 毛心慰;BTEX嗜盐降解细菌的多样性及降解特性的初步研究[D];清华大学;2008年



本文编号:1846826

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1846826.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b964c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com