黄姜皂素废水预处理研究
本文选题:皂素废水 + 铁碳微电解 ; 参考:《陕西科技大学》2017年硕士论文
【摘要】:黄姜皂素废水是一种高浓度、难降解的工业废水,其组成比较复杂,废水中糖分、有机物、氨氮含量较高。未降解的皂苷是含一种表面活性剂,皂素废水具有酸度低、色度大、可生化性差等特点,在处理过程中极易产生泡沫,处理难度较大。探索出一条经济实用的黄姜皂素预处理工艺对黄姜皂素废水生物处理具有一定意义。本文在大量实验基础上,以陕西省华县某皂素生产厂家的废水为原料,采用铁碳微电解-Fenton氧化组合工艺的方法对皂素废水进行预处理研究,发现该工艺能显著降低黄姜皂素废水的COD值及色度,为黄姜皂素废水的生物降解提供了保障。本文研究结果如下:(1)通过单因素实验及正交实验得出在铁碳微电解阶段最佳的反应条件是:pH值为3、铁碳微电解填料投加量为45g/100mL、反应时间为120min、曝气量控制在10-15mL/min。反应结束后调节出水pH为9.0,废水COD值从97000mg/L降至58006mg/L左右,COD去除率为40.2%,色度从11833度降至6248度,色度去除率为47.6%。除此之外还提高了废水的可生化性,B/C值由0.27增至0.49。通过研究发现影响COD去除率主要因素依次为:反应时间p H值曝气量铁碳填料投加量;影响色度去除率主要因素依次为:pH值曝气量铁碳填料投加量反应时间。铁碳微电解技术对皂素废水有较好的处理效果。(2)根据单因素实验及正交实验得出经微电解处理的皂素废水在Fenton氧化工艺阶段最佳的反应条件是:pH值为3、2+Fe浓度为2500mg/L、双氧水投加量为100mL/L、双氧水投加的方式为多次投加、反应时间为90min。反应结束后调节出水p H为9.0,废水COD值从97000mg/L降至9765mg/L左右,COD去除率达89.7%,色度从11833度降至1767度,色度去除率达84.5%,大幅度的提高了废水的可生化性,B/C值升至0.63。影响COD去除率主要因素依次为:pH值2+Fe浓度双氧水投加量反应时间;影响色度去除率主要因素依次为:双氧水投加量2+Fe浓度pH值反应时间。铁碳微电解技术与Fenton氧化工艺组合处理皂素废水效果良好。(3)采用IR、UV、GPC、HPLC、TOC、GC-MS等谱图分析手段研究了黄姜皂素废水预处理前后有机物种类及数量的变化规律,证实预处理可明显改善废水水质。经过铁碳微电解-Fenton氧化工艺组合对皂素废水进行预处理可大大提高废水的可生化性,使其能达到可生化处理的要求。
[Abstract]:Zingiber saponin wastewater is a kind of industrial wastewater of high concentration and difficult to degrade. Its composition is complex, and the content of sugar, organic matter and ammonia nitrogen in the wastewater is high. The undegraded saponins contain a kind of surfactant. The saponin wastewater has the characteristics of low acidity, large color and poor biodegradability, so it is easy to produce foam in the treatment process, and the treatment is difficult. To explore an economical and practical pretreatment process of alpinia saponin has certain significance for the biological treatment of ginger saponin wastewater. Based on a large number of experiments, the pretreatment of saponin wastewater from a saponin factory in Huaxian County, Shaanxi Province, was studied by using the iron-carbon micro-electrolysis-Fenton oxidation process. It was found that this process could significantly reduce the COD value and chroma of the ginger saponin wastewater, which provided a guarantee for the biodegradation of the ginger saponin wastewater. The results are as follows: (1) by single factor experiment and orthogonal experiment, the optimum reaction conditions for iron / carbon microelectrolysis are as follows: the pH value is 3, the dosage of iron / carbon micro-electrolytic filler is 45g / 100mL, the reaction time is 120min, and the aeration rate is controlled at 10-15mL / min. At the end of the reaction, the pH of effluent was adjusted to 9. 0, the COD value of wastewater decreased from 97000mg/L to 58006mg/L about 40. 2%, the chromaticity decreased from 11833 to 6248 degrees, and the removal rate of chrominance was 47. 6%. In addition, the biodegradability of wastewater was increased from 0.27 to 0.49. It was found that the main factors affecting the removal rate of COD were: reaction time pH value of aeration amount of iron carbon filler dosage of iron carbon filler and the main factor of affecting the removal rate of chrominance of iron carbon filler was: proportion of iron and carbon filler amount of aeration at 1: ph value and reaction time of adding amount of iron carbon filler. Iron and carbon microelectrolysis technology has a better treatment effect on saponin wastewater. (2) according to the single factor experiment and orthogonal experiment, the optimum reaction condition of the saponin wastewater treated by microelectrolysis in the Fenton oxidation process stage is that the concentration of 3% pH value is 3n2Fe, which is the best reaction condition in the process of oxidation of saponin wastewater by microelectrolysis. The amount of hydrogen peroxide added is 100 mL / L, and the way hydrogen peroxide is added is multiple times. The reaction time is 90 min. At the end of the reaction, the pH of effluent was 9.0, the COD value of wastewater decreased from 97000mg/L to 9765mg/L about 89.7C, the chroma decreased from 11833 degrees to 1767 degrees, and the removal rate of chrominance reached 84.5%, which greatly improved the biodegradability of wastewater and the value of B / P C increased to 0.63. The main factors affecting the removal rate of COD were: the reaction time of hydrogen peroxide at the concentration of 2 Fe and the reaction time of the dosage of 2 Fe in hydrogen peroxide, and the main factors affecting the removal rate of chroma were: the dosage of hydrogen peroxide and the pH value of the concentration of 2 Fe. The combination of iron-carbon micro-electrolysis and Fenton oxidation process was used to treat saponin wastewater. It is proved that pretreatment can obviously improve the quality of wastewater. Pretreatment of saponin wastewater by iron-carbon micro-electrolysis-Fenton oxidation process can greatly improve the biodegradability of wastewater and make it meet the requirement of biodegradable treatment.
【学位授予单位】:陕西科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703
【参考文献】
相关期刊论文 前10条
1 张世新;沈青;沈嵬;励金双;张浩俊;;分散染料废水处理改造工程案例[J];上海化工;2016年09期
2 程建伟;;超临界水氧化法在处理工业有机废水中的应用与展望[J];地下水;2013年02期
3 宋凤敏;;皂素生产中废水处理技术的研究进展[J];湖北农业科学;2012年14期
4 胡红伟;李晓燕;;Fenton催化氧化反应机理及影响因素研究进展[J];科技通报;2012年04期
5 程银芳;陈芳;;Fenton试剂处理制药厂废水研究[J];精细石油化工进展;2012年01期
6 张志军;王中琪;吴兴贵;;强化微电解—絮凝工艺皂素废水预处理研究[J];广东化工;2011年09期
7 张莹;霍莹;阮晓磊;张虹;;微波强化铁炭微电解预处理含油废水的试验研究[J];工业用水与废水;2011年04期
8 陈润华;柴立元;王云燕;舒余德;蒋国民;;新型铁炭微电解法降解EDTA有机废水[J];中南大学学报(自然科学版);2011年06期
9 潘全;王惠;杨玉娇;宋功武;;铁碳微电解处理印染废水的研究[J];湖北大学学报(自然科学版);2011年02期
10 武秀文;徐平如;王历申;;微电解工艺处理印染废水的研究[J];广东化工;2011年05期
相关会议论文 前1条
1 严莲荷;王瑛;蒋齐光;周申范;;铁碳微电解处理富马酸废水的研究[A];’2004全国水处理技术研讨会暨第24届年会论文集[C];2004年
相关硕士学位论文 前6条
1 徐永涛;黄姜皂素产业最佳清洁生产评估及其生产废水处理探究[D];华中科技大学;2013年
2 杨津津;微电解—电絮凝耦合技术处理含重金属铅锌冶炼废水的研究[D];昆明理工大学;2012年
3 罗发生;铁碳微电解絮凝—耦合法处理铅锌冶炼废水[D];昆明理工大学;2011年
4 毛小方;UASB-SBR工艺处理黄姜皂素生产废水试验研究[D];长安大学;2006年
5 宋凤敏;酵母菌—EM活性污泥组合工艺处理皂素生产废水的研究[D];西北农林科技大学;2004年
6 胡玉洁;黄姜生产皂素废水处理技术研究[D];江南大学;2004年
,本文编号:1974286
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1974286.html