当前位置:主页 > 社科论文 > 生态环境论文 >

黄河流域不同季节水相、沉积物和土壤中多环芳烃分布、来源和风险评价

发布时间:2018-06-17 18:45

  本文选题:黄河 + 多环芳烃 ; 参考:《北京交通大学》2017年硕士论文


【摘要】:随着黄河流域沿岸经济的不断发展,持久性有机污染物日益受到人们的关注,本文以 23 种多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)为目标污染物,首次从源头至入海口对黄河流域水体、沉积物及土壤中多环芳烃的种类、含量进行了研究,全流域共设39个采样点。揭示了近年来黄河全流域多环芳烃残留规律,并对受到强致癌性污染和高风险性的采样点地区进行具体来源分析,以便从源头对多环芳烃的输入进行有效控制。结果如下:(1)对黄河全流域39个国控断面采样点中水、沉积物和土壤中PAHs检测结果表明:黄河流域春秋季水相中总多环芳烃∑23PAHS(6种致癌性多环芳烃∑6carPAHs)总浓度范围分别为 51.84~1941.29ng/L(4.85~1122.67ng/L)和1.20~802.13ng/L(0~101.52ng/L);沉积物中春秋季∑23PAH3(∑6carPAHs)总浓度范围分别是 14.09~1004.08ng/g(1.39~134.05ng/g)和 10.01~2429.70ng/g(16.93~171.92ng/g);沿岸土壤中春秋季∑23PAHs(∑carPAHs)总浓度范围分别是18.22~867.55ng/g(24.73~370.54ng/g)和 3.53~1097.23ng/g(53.6~582.01ng/g)。由此可知,黄河流域不同季节三相介质中总多环芳烃与致癌性多环芳烃分布相关性较高,沉积物中PAHs含量高于土壤(干重);甘肃段和河南段PAHs含量远远高于黄河流域平均PAHs浓度;水相、沉积物和土壤中PAHs平均含量与国内外不同河流相比处于中等偏低的水平,但高污染风险的地区需重点控制以防恶化。(2)分别用比值法、主成分分析法和PMF模型法对黄河流域春秋季不同介质中PAHs的输入源进行比较分析,以便有关部门从源头对多环芳烃污染进行控制。结果表明:春秋季水相中主要污染源分别为石油、煤焦油直接污染和煤炭、木材的燃烧;黄河春秋季沉积物相中多环芳烃主要来源分别为煤、木材的燃烧和石油、煤及木材的不完全燃烧;黄河沿岸土壤中春季PAHs的主要污染源为有机质、木材与煤的燃烧;秋季的主要来源为木材与煤的燃烧。由此可见黄河流域不同季节不同介质间PAHs来源也不同,主要是由PAHs的理化性质决定的。而水相、沉积物和土壤中主要污染来源都包括煤和木材的燃烧,可见需从该两方面入手来控制黄河沿岸PAHs向环境中的输入。(3)分别用毒性当量法、熵值法和健康风险评价方法对黄河流域三相中多环芳烃进行生态风险评价,结果表明:春秋季水相中致癌性危险高的采样点分别为贵德(甘肃)、三门峡(河南)、西师(河南)、民和(甘肃)、石嘴山(内蒙)和高村(山东);春秋季分别有12.5%和15%采样点的苯并[a]芘超过我国地表水标准限值。水相中PAHs的风险普遍存在,尤其是对水中昆虫幼虫风险极大。黄河流域春秋季沉积物中致癌性PAHs浓度高的地区分别都为西师(河南)和黑石关(河南);而土壤中春秋季致癌性较高的地区分别为黑石关(河南)、青铜峡(内蒙)、享堂(甘肃)和新城桥(甘肃)。由此可见黄河流域河南段风险高于其他地区,河南省为农业和工业大省,粗放式排放造成了黄河河南段PAHs高残留和高风险。健康风险评价分析表明三种暴露途径对人类风险大小顺序为经口误食皮肤接触呼吸摄入;春秋季分别有53%和55%的采样点会通过误食途经对沿岸儿童造成高风险,17.5%和25%的采样点会经皮肤暴露对沿岸儿童造成一定致癌风险。因此要减少高风险采样点源头排放并加强对沿岸儿童的保护。
[Abstract]:With the continuous development of the economic development along the the Yellow River River Basin, the persistent organic pollutants are getting more and more attention. In this paper, 23 polycyclic aromatic hydrocarbons (Polycyclic Aromatic Hydrocarbons, PAHs) are used as the target pollutants. The species and content of polycyclic aromatic hydrocarbons in the water, sediment and soil in the the Yellow River basin are first studied from the source to the entrance to the sea. There are 39 sampling points in the whole river basin. The rule of polycyclic aromatic hydrocarbon residues in the whole river basin of the Yellow River in recent years is revealed, and the specific source analysis is carried out on the area of highly carcinogenic pollution and high risk sampling point, so that the input of polycyclic aromatic hydrocarbons can be effectively controlled from the source. The results are as follows: (1) in the 39 national control cross section sampling points in the whole river basin of the Yellow River The results of PAHs detection in water, sediment and soil showed that the total concentration range of total polycyclic aromatic hydrocarbons (6 kinds of carcinogenic polycyclic aromatic hydrocarbons (6carPAHs) in the water phase of the spring and Autumn Period in the the Yellow River basin was 51.84 to 1941.29ng/L (4.85 to 1122.67ng/L) and 1.20 to 802.13ng/L (0 to 101.52ng/L), respectively, and the total concentration range of sigma 23PAH3 (sigma 6carPAHs) in spring and autumn in the sediments. From 14.09 to 1004.08ng/g (1.39 to 134.05ng/g) and 10.01 to 2429.70ng/g (16.93 to 171.92ng/g), the total concentrations of sigma 23PAHs (sigma carPAHs) in spring and autumn in coastal soils are 18.22 to 867.55ng/g (24.73 to 370.54ng/g) and 3.53 to 1097.23ng/g (53.6 to 582.01ng/ g). Therefore, the total number of three phase medium in different seasons in the Yellow River basin is much more than that. The distribution of cyclic aromatic hydrocarbons and carcinogenic polycyclic aromatic hydrocarbons is higher, and the content of PAHs in the sediments is higher than that in the soil (dry weight); the content of PAHs in Gansu and Henan sections is far higher than that of the average PAHs concentration in the the Yellow River basin; the average content of PAHs in water, sediment and soil is at the middle level compared with the different rivers at home and abroad, but the area with high pollution risk is high. The key control is needed to prevent the deterioration. (2) the ratio method, principal component analysis and PMF model method are used to compare the input sources of PAHs in different media in the spring and Autumn period of the Yellow River basin, so that the relevant departments can control the pollution of polycyclic aromatic hydrocarbons from the source. The results show that the main pollution sources in the spring and autumn season are the main pollution sources of the oil and the coal tar is directly polluted. The main source of polycyclic aromatic hydrocarbons in the sediment phase in the spring and Autumn period of the Yellow River is coal, wood combustion and oil, and the incomplete combustion of coal and wood, and the main source of PAHs pollution in spring along the Yellow River coastal soil is organic matter, wood and coal combustion, and the main source of the autumn season is the burning of wood and coal. The sources of PAHs in different seasons in different seasons are also different, mainly determined by the physical and chemical properties of PAHs. The main pollution sources of water, sediment and soil include the combustion of coal and wood. It is visible from the two aspects to control the input of PAHs along the the Yellow River coast to the environment. (3) the entropy method and the health are used respectively. The ecological risk assessment of polycyclic aromatic hydrocarbons in the Yellow River basin was carried out by the method of health risk assessment. The results showed that the sampling points of high risk of carcinogenicity in the spring and Autumn period were Guide (Gansu), Sanmenxia (Henan), Western Division (Henan), min and Gansu, Shizuishan (Inner Mongolia) and Takamura (Shandong), and 12.5% and 15% sampling points of benzo [a respectively in the spring and Autumn period. The risk of pyrene exceeds the standard limit of surface water in China. The risk of PAHs in the water phase is widespread, especially in the water insect larvae. In the spring and Autumn period of the Yellow River basin, the regions with high concentrations of carcinogenic PAHs are the Western Division (Henan) and the black stone (Henan), and the areas with higher carcinogenicity in spring and autumn in the soil are the black stone (Henan), respectively. Qingtongxia (Inner Mongolia), enjoy Hall (Gansu) and Xincheng bridge (Gansu). Therefore, the risk of Henan section in the Yellow River river basin is higher than that of other regions, Henan province is a large agricultural and industrial province. Extensive emission caused the high residual and high risk of PAHs in Henan section of the Yellow River. The health risk assessment analysis shows that the three exposures to human risk are in order of error in the order of human risk. In the spring and Autumn period, 53% and 55% of the sampling points in the spring and Autumn period can cause high risk to the children along the coast. The 17.5% and 25% sampling points will cause certain carcinogenic risks to the coastal children through the skin exposure. Therefore, the source of high risk sampling points should be reduced and the protection of the children along the coast should be strengthened.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X592;X820.4

【参考文献】

相关期刊论文 前9条

1 张旭;卢双;裴晋;姚宏;于晓华;;长江湖北段表层土中多环芳烃分布、来源及风险评价[J];环境科学学报;2016年12期

2 许云竹;花修艺;董德明;梁大鹏;李仁声;刘春阳;;地表水环境中PAHs源解析的方法比较及应用[J];吉林大学学报(理学版);2011年03期

3 ;Distribution of polycyclic aromatic hydrocarbons in sediments from Yellow River Estuary and Yangtze River Estuary,China[J];Journal of Environmental Sciences;2009年12期

4 智昕;牛军峰;唐阵武;杨志峰;;长江水系武汉段典型有机氯农药的生态风险评价[J];环境科学学报;2008年01期

5 杨晓磊;陆贻通;曹林奎;;多环芳烃荧蒽降解菌的筛选鉴定及降解特性研究[J];科技通报;2007年01期

6 段永红;陶澍;王学军;李本纲;朱利中;骆永明;;天津表层土壤中多环芳烃的主要来源[J];环境科学;2006年03期

7 郭跃东,何岩,邓伟,章光新,潘继花;扎龙河滨湿地对地表径流氮磷污染物的净化作用[J];环境科学;2005年03期

8 麦碧娴,林峥,张干,盛国英,闵育顺,傅家谟;珠江三角洲河流和珠江口表层沉积物中有机污染物研究——多环芳烃和有机氯农药的分布及特征[J];环境科学学报;2000年02期

9 朱利中,沈学优,刘勇建,叶春生;高效液相色谱法分析水中痕量多环芳烃[J];环境化学;1999年05期

相关博士学位论文 前1条

1 刘颖;上海市土壤和水体沉积物中多环芳烃的测定方法、分布特征和源解析[D];同济大学;2008年

相关硕士学位论文 前2条

1 尹莉莉;扎龙湿地中持久性有机污染物的污染特征研究[D];哈尔滨工程大学;2008年

2 郑海龙;天津海河干流沉积物中多环芳烃的分布特征研究[D];天津大学;2007年



本文编号:2032072

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2032072.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户48198***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com