采用低温热等离子体技术处理化工危险废物的工艺概念设计
发布时间:2018-06-22 21:34
本文选题:低温热等离子体 + 危废 ; 参考:《山东大学》2017年硕士论文
【摘要】:石油炼化生产过程中产生的大量危废必须完成生产周期的最终解毒过程,中海油气石化一体化和中海油气化工CJS项目(CJS,CNOOC-JS)也不可避免的面对这个石化企业长期以来一直无法有效解决的难题。随着2015年开始实施的新环保法与强制性标准以及行政管理条例,为了满足新的法规和技术标准,CJS项目迫切需要研究先进工艺进行技术升级以避免现行技术存在的严重二次污染问题。为了研究如何将低温热等离子体(CTP,Cold Thermal Plasma)应用于CJS项目危废解毒,本文主要做了以下几个方面的工作:①研究首先对CJS项目产生的危废的数据统计和年度生产周期采样并进行了代表性危废特征配比,然后使用低温热等离子体反应器(CTPR,Cold Thermal Plasma Reactor)实验装置完成了 CTP分解特征危废的实验。②完成了分解实验的气态产物的检测,检测结果表明:特征危废分解后的气态产物不会形成二次污染,一氧化碳和氢气的比率超过90%,适合作为燃气进行能量回收。同时还完成了 CTP分解实验的的残渣毒性浸出检测,检测数据显示CTPR的残渣不再属于危险废弃物,不必再进行进一步无害化的处理。CTP分解实验显示低温热等离子体技术非常适用于特征危废,在无害化,减量化和资源化各个方面都具备明显的优点。③进一步研究了 CTP方法在CJS项目上的工艺实现,在CJS项目危废物料统计分析与分解实验数据的基础上进行了低温热等离子体处理危废工艺的流程概念设计,包括ASPEN HYSYS模拟等离子体反应器在实验参数时的物料能量平衡,通过ASPEN HYSYS模拟等离子体反应器,可以发现分解实验获得的反应器功耗数据与使用危废能耗经验值模拟的能量平衡结果吻合很好,能够获得比较良好的模型精度。因此反应器研发和外围工艺设计准确性可以得到保障。④使用Tamosiunas等完成的标准格式的关联式计算了低温热等离子炬(CTPT,Cold Thermal Plasma Torch)的电工特性和热工特性。CTP弧体在炬腔体内的轴截面运动轨迹计算模型采用了过增元等研究的SPM(Single Particle Motion)理论,依照 Steenbeck 的 PMAV(Principle of Minimum Arc Voltage)数值方法对EHE(Elenbaas-Heller Equation)求解得到了弧电流、弧柱半径、弧柱温度值,由此确定了与CTPR配套的低温热等离子炬研发所需要的基础设计参数:等离子炬喷口的流速,温度和功率。⑤选择ANSYS FLUENT MHD按照Trelles的模型对主要的CTPT参数计算结果进行了校核。ANSYS CFD MHD Simulation 显示 CTPT 的 TD(Temperature Distribution)和 VD(Velocity Distribution)值与 Tamosiunas 关联式计算的CTP 的 MT(Mean Temperature)和 MV(Mean Velocity)值偏差均不超过 8%。因此等离子炬能够进行放大研发以满足CTPR的过程控制和运行条件的要求。综上所述,研究得到的数据可以满足等离子反应器和等离子炬研发的基础设计数据要求,也能够为数据包与工艺包的开发提供可靠的核心输入数据和工程桥接参数。
[Abstract]:The final detoxification process of the production cycle must be completed by a large number of dangerous wastes produced in the process of petroleum refining and chemical production. CNOOC gas petrochemical integration and CJS CNOOC-JS also inevitably face this petrochemical enterprise has been unable to effectively solve the problem for a long time. With the new environmental laws and mandatory standards and administrative regulations that came into effect in 2015, In order to meet the new regulations and technical standards, CJS project urgently needs to study the advanced technology to upgrade the technology to avoid the serious secondary pollution problem existing in the current technology. In order to study how to apply CTP Cold Thermal Plasma (CTP) to dangerous detoxification in CJS project, The main work of this paper is as follows: 1. Firstly, the data statistics and annual production cycle sampling of the CJS project are carried out. Then, the experimental device of CTPRN Cold Thermal Plasma reactor was used to complete the detection of gaseous products in the decomposition experiment of CTP. 2. The results show that the gaseous products decomposed by the characteristic waste will not cause secondary pollution, and the ratio of carbon monoxide to hydrogen is more than 90, which is suitable for energy recovery as gas. At the same time, the residue toxicity leaching test of CTP decomposition experiment was completed. The test data showed that the residue of CTPR is no longer a hazardous waste. No further innocuous treatment. CTP decomposition experiment shows that the low temperature thermal plasma technology is very suitable for the characteristic hazardous waste and is harmless. The process realization of CTP in CJS project is further studied. Based on the statistical analysis and decomposition of the experimental data of hazardous wastes in CJS project, the conceptual design of the process for treating hazardous waste by low temperature thermal plasma was carried out, including the material energy balance of Aspen HYSYS simulated plasma reactor under the experimental parameters. By using Aspen HYSYS to simulate the plasma reactor, it can be found that the power consumption data obtained from the decomposition experiment are in good agreement with the energy balance results of the simulation using the experience value of the dangerous waste energy consumption, and the model accuracy can be obtained. Therefore, the accuracy of reactor R & D and peripheral process design can be guaranteed by using the correlation formula of standard format completed by Tamosiunas et al. The electrical and thermal characteristics of CTPTT Cold Thermal Plasma Torch are calculated. The calculation model of axial cross section motion trajectory is based on the SPM (single Particle Motion) theory, which is studied by supersupernumerers, etc. According to Steenbeck's PMAV (principle of minimum Arc Voltage) method, the arc current, arc radius and arc temperature are obtained by solving the EHE (Elenbaas-Heller equation). Thus, the basic design parameters needed for the research and development of the low temperature thermal plasma torch matched with CTPR are determined: the velocity of the plasma torch nozzle, Temperature and power 5 choose ANSYS fluent MHD to check the main CTPT parameters according to Trelles model. ANSYS CFD MHD Simulation shows the TD (temperature Distribution) and VD (Velocity Distribution) values of CTPT and the values of mean Temperature and MV (mean Velocity) of CTP calculated by the correlation between CTPT and Tamosiunas. The deviations are not more than eight. Therefore, the plasma torch can be amplified to meet the requirements of CTPR process control and operation conditions. To sum up, the data obtained can meet the basic design data requirements of plasma reactor and plasma torch, and can provide reliable core input data and engineering bridging parameters for the development of packet and process package.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O646.9;X742
【相似文献】
相关期刊论文 前10条
1 过增元;热等离子体与能源[J];力学进展;1982年04期
2 吴美潮;《电弧和热等离子体》新书介绍[J];电工技术杂志;1988年03期
3 陈熙;具有广阔前景的热等离子体处理[J];物理;1991年04期
4 戴晓雁,康建华,印永祥;热等离子体裂解煤研究综述[J];煤化工;2001年01期
5 刘颖,王浩静,周立公,晁兵,宋士玮;热等离子体裂解天然气的研究进展[J];天然气化工;2003年01期
6 梁昌雄,袁善齐;热等离子体技术处理处置危险废物[J];有色金属再生与利用;2005年07期
7 申曙光;王月波;鲍卫仁;吕永康;;热等离子体转化煤的研究进展[J];煤化工;2007年06期
8 吴昌宁;颜彬航;章莉;双s,
本文编号:2054294
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2054294.html