地质体曝气生物滤池在生活污水处理中的理论研究与实践
本文选题:曝气生物滤池 + 地质体填料 ; 参考:《成都理工大学》2017年硕士论文
【摘要】:我国的水污染非常严重,特别是江河流域普遍受到污染,且呈发展的趋势,农村生活污水的不达标排放是其主要的影响因素之一。针对农村生活污水的处理技术很多,考虑到农村经济条件及生活污水特点,需使用小型化、建设成本小、运行费用低、管理维护方便、处理效果及生态景观效果好的处理系统。本文提出采用以曝气生物滤池法为核心的污水处理系统对农村生活片区生活污水进行处理。曝气生物滤池采用地质体作为填料,使用不同粒径的天然砾石、灰岩、河砂组合搭配,来研究地质体作为曝气生物滤池填料的可行性。通过室内实验对滤池结构与尺寸、曝气方式、填料选取及布置、布水方式及进出水控制进行分析及研究,建立了曝气生物滤池,并测定出滤池的水力学参数。对曝气生物滤池进行挂膜研究,挂膜成功后采用单因素分析法研究滤池厚度、曝气时间、停留时间对系统处理污水的影响,通过正交实验分析在三种影响因素下的最优条件,建立各指标的回归方程,最后通过对曝气生物滤不同季节运行情况的持续监测,得出不同水温条件下各指标的去除率及曝气生物滤池最佳运行温度。通过上述方法,试验得到的结果与结论如下:(1)本次试验采用鼓风机对滤池进行曝气,试验曝气管管径为DN25时,两管之间距离为200mm,曝气孔孔径为10mm,曝气孔间距为100mm,在小孔上加设有防堵盖层;填料采用砾石-灰岩-河砂-灰岩-河砂-灰岩的组合方式填充,填料中埋设有布水管道及反冲洗管道,可根据需要对其进行分层布水;试验测得填料基质的渗透系数在130.60~214.23m/d之间,滤池孔隙度为19.98%。(2)试验采用自然挂膜条件法,历经30天挂膜初步成功。从挂膜开始到挂膜初步成功COD的去除率从最初的13.26%到最后的稳定在65%附近,其中最高去除率达到66.73%;TN的去除率从最初的8.78%升至38.29%;NH_4~+-N的去除率从最初的28.19%升至73.81%;TP的出去率受生物膜的影响最小,从试验启动第一天开始,TP的去除率就达到57.78%,到挂膜成功去除率稳定在72.96%左右其中,最大去除率达到84.67%;浊度从挂膜开始略有增加,从第6天开始,滤池对污水中的悬浮物去除开始起作用,滤池出水口浊度开始下降,至挂膜成功,浊度平均减小率在49.47%,其中最高减小率为76.35%。(3)在不同滤层厚度条件下,曝气生物滤池对COD、TN、NH_4~+-N去除率影响不存在显著差异性,且随着滤池厚度的增加,滤池对COD、NH_4~+-N的去除率增加,对TN去除率的影响较小;滤池对TP的去除率影响存在显著差异性,不同厚度下的滤池对TP的去除率影响很大,滤池厚度越大,对TP的去除效果越好。(4)在不同曝气时间下,曝气生物滤池对COD、TN、NH_4~+-N去除率影响存在显著差异性,COD、NH_4~+-N随着曝气时间的增加去除率增加,TN随着曝气时间的增加去除率较小;曝气时间对TP的去除率影响不存在显著性差异,不同曝气时间对TP的去除率整体影响不大。(5)在不同停留时间下,曝气生物滤池对COD、TN、NH_4~+-N、TP去除率影响都存在显著差异性,COD、TN、NH_4~+-N、TP的去除率都随着停留时间的增加而增加。(6)通过正交试验得出在温度21.8~25.5℃、pH 7.0~8.5、流量3~5m3/d的条件下,当滤池厚度为1.55m、曝气时间为30min/3h、以及停留时间为1.08~1.79d时曝气生物滤对生活污水的处理效果最佳。(7)在最佳运行条件下,建立了各指标的线性回归和对数回归方程,COD在进水浓度47.19~83.93 mg/L下回归方程为C_(No)=0.3395C_(Ni)-1.7197和C_(NO)=21.311n(C_(Ni))-68.627;TN 在进水浓度 18.41~31.10 mg/L 下回归方程为C_(No)=0.4131C_(Ni)+1.7969 和 C_(No)=9.98851n(C_(Ni))-19.932;NH_4~+-N 在进水浓度7.99~14.29 mg/L下回归方程为 C_(No)=0.2269C_(Ni)+0.1932和 C_(No)=2.44091n(C_(Ni))-3.1251;TP在进水浓度0.89~2.35 mg/L下回归方程为C_(No)=0.2201C_(Ni)+0.0428和C_(No)=0.334711n(C_(Ni))+0.2522。(8)曝气生物滤池对各指标的去除效果受水温的影响显著,水温在20~25℃时COD去除率达到68.73%,TN去除率达到51.54%,NH_4~+-N去除率达到75.42%,TP去除率达到75.24%,当水温降到10℃及以下时,曝气生物滤池对各指标的去除率已经很低,对COD去除率仅为32.70%,对TN去除率仅为13.38%,对NH_4~+-N去除率下仅为25.24%,TP去除率仅为52.6%。通过试验得出曝气生物滤池最佳运行温度为15~25℃。(9)地质体填料具有价格低、易获取等特点,通过试验论证,使用地质体作为曝气生物滤池的填料基质具有可行性,且其对TP的去除具有显著的优势性。
[Abstract]:The water pollution in China is very serious, especially the river basin is generally polluted, and it is developing trend. The discharge of rural domestic sewage is one of its main influencing factors. There are many treatment techniques for rural domestic sewage. Considering the rural economic conditions and the characteristics of domestic sewage, it is necessary to use miniaturization, small construction cost and operation. A treatment system with low cost, convenient management and maintenance, good treatment effect and good ecological landscape effect. This paper proposes a sewage treatment system with biological aerated filter as the core to treat domestic sewage in rural areas. The biological aerated filter is used as a filler to combine natural gravel, limestone and river sand with different particle sizes. The feasibility of the geological body as a biological aerated filter filler is studied. Through the laboratory experiment, the structure and size of the filter, the aeration mode, the selection and arrangement of the filler, the water distribution mode and the control of the import and export of water are analyzed and studied. The biological aeration filter is established and the hydraulic parameters of the filter pool are determined. After the film, the single factor analysis was used to study the influence of filter thickness, aeration time and residence time on the sewage treatment. Through the orthogonal experiment, the optimal conditions under the three factors were analyzed, and the regression equation of each index was established. Finally, the different water was obtained by continuous monitoring of the different seasons of the aeration biological filtration. The results and conclusions are as follows: (1) when the air blower is aerated, the distance between the two tubes is DN25, the distance between the two tubes is 10mm, the aperture of the aeration is 10mm, the spacing of the aeration is 100mm, and it is on the small hole. The filler is filled with gravel - limestone - graystone, river sand, limestone, river sand - limestone. The filling water pipeline and backwashing pipeline are embedded in the packing. The water distribution of the filler can be stratified according to the needs. The permeability coefficient of the filler matrix is between 130.60 and 214.23m/d, and the porosity of the filter is 19.98%. (2). The membrane condition method was successful for 30 days. From the beginning of the film to the hanging membrane, the removal rate of COD was stable from the initial 13.26% to the last 65%, with the highest removal rate of 66.73%; the removal rate of TN rose from the original 8.78% to 38.29%; the removal rate of NH_4~+-N rose from the original 28.19% to 73.81%; the rate of TP went out by biology. The film has the smallest effect. From the first day of the test, the removal rate of TP reaches 57.78%, and the successful removal rate of the membrane is about 72.96%, the maximum removal rate is 84.67%, the turbidity increases slightly from the hanging film. From the sixth day, the filter has the effect on the removal of suspended matter in the sewage, and the turbidity of the filter outlet begins to decrease. The average reduction rate of turbidity is 49.47%, and the maximum reduction rate is 76.35%. (3). The effect of BAF on COD, TN, NH_4~+-N removal rate is not significantly different. With the increase of the filter thickness, the removal rate of COD and NH_4~+-N is increased, and the influence of TN removal rate is less. Filter to T The effect of the removal rate of P has significant difference. The filter with different thickness has great influence on the removal rate of TP. The better the filter thickness is, the better the removal effect of TP. (4) there is a significant difference in the effect of the biological aeration filter on the removal rate of COD, TN and NH_4~+-N at different aeration time. COD, NH_4~+-N increases with the increasing of aeration time, TN With the increase of aeration time, the removal rate is smaller, the effect of aeration time has no significant difference on the removal rate of TP, and the effect of different aeration time on the removal rate of TP is not significant. (5) there are significant differences in the effect of the biological aeration filter on the removal rate of COD, TN, NH_4~+-N and TP at different residence time, and the removal rates of COD, TN, NH_4~+-N and TP are all With the increase of the residence time. (6) through orthogonal test, it is obtained that under the conditions of temperature 21.8 ~ 25.5, pH 7 ~ 8.5 and flow 3 ~ 5m3/d, the best treatment effect of biological aeration filter to living water is achieved when the thickness of the filter is 1.55m, the aeration time is 30min/3h, and the residence time is 1.08 to 1.79d. (7) under the optimum operating conditions, the establishment of the system is established. Linear regression and logarithmic regression equation of each index. The regression equation of COD is C_ (No) =0.3395C_ (Ni) -1.7197 and C_ (NO) =21.311n (C_ (Ni)) under the influent concentration from 47.19 to 83.93 mg/L. The regression equation under the concentration of 7.99 ~ 14.29 mg/L was C_ (No) =0.2269C_ (Ni) +0.1932 and C_ (No) =2.44091n (C_ (Ni)) -3.1251, and the effect of the biological aeration filter (8) on the removal of each index was significantly affected by the water temperature, and the water temperature was 20 At 25 C, the removal rate of COD reached 68.73%, the removal rate of TN reached 51.54%, the removal rate of NH_4~+-N reached 75.42%, and the removal rate of TP reached 75.24%. When the water temperature dropped to 10 and below, the removal rate of the biological aerated filter was very low, the removal rate of COD was only 32.70%, the TN removal rate was only 13.38%, and the NH_4~+-N removal rate was only 25.24%, TP went to TP. The best operation temperature of the biological aeration filter is 15~25 C through the test. (9) the geological body filler has the characteristics of low price and easy access. Through the experiment, it is proved that it is feasible to use geological body as the filler matrix of the biological aerated filter, and the removal of TP has remarkable advantages.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X799.3
【参考文献】
相关期刊论文 前10条
1 张小玲;李强;王靖楠;王欣泽;林燕;;曝气生物滤池技术研究进展及其工艺改良[J];化工进展;2015年07期
2 吴舜泽;王东;马乐宽;徐敏;;向水污染宣战的行动纲领——《水污染防治行动计划》解读[J];环境保护;2015年09期
3 张塞;张有忱;阎华;杨卫民;;污水处理中曝气设备的研究进展[J];广东化工;2015年05期
4 杨威;张雷坤;余华荣;梁恒;李圭白;;前置反硝化曝气生物滤池的挂膜启动研究[J];环境工程学报;2014年11期
5 郭萍;;单因素方差分析在数理统计中的应用[J];长春大学学报;2014年10期
6 骆景涛;;浅谈曝气生物滤池的原理及影响因素[J];中国新技术新产品;2013年11期
7 刘晓璐;牛宏斌;闫海;丁湛;卢凤兰;马晓毅;杨柳青;刘永智;;农村生活污水生态处理工艺研究与应用[J];农业工程学报;2013年09期
8 黄胜元;谌建宇;余健;黄荣新;林伟仲;刘钢;邓伟光;;一体化多层滤料曝气生物滤池的启动特性[J];中国给水排水;2013年05期
9 唐少宇;周如金;钟华文;邱松山;;曝气生物滤池技术的研究进展[J];现代化工;2013年02期
10 邱秋图;梁类钧;;曝气生物滤池的特点及运行效果[J];能源与环境;2012年05期
相关会议论文 前1条
1 段秀举;;一体化曝气生物滤池在重庆市某污水处理厂的应用研究[A];经济发展方式转变与自主创新——第十二届中国科学技术协会年会(第四卷)[C];2010年
相关硕士学位论文 前10条
1 雷玉新;炉渣填料曝气生物滤池处理农村污水研究[D];三峡大学;2016年
2 韩诚;交替曝气生物滤池工艺处理生活污水实验室研究[D];南京大学;2016年
3 王韦胜;磁性生物炭填料BAF处理城市生活污水的试验研究[D];江苏大学;2016年
4 齐泽宁;核桃壳-陶粒填料曝气生物滤池处理氨氮废水的研究[D];陕西科技大学;2016年
5 王润;校园生活污水生物接触氧化法处理系统的低温启动与运行稳定性试验研究[D];新疆农业大学;2015年
6 熊昌龙;人工湿地填料基质对污水厂尾水深度处理研究[D];成都理工大学;2014年
7 阳琪琪;A/O生物接触氧化工艺处理城市污水试验研究[D];重庆大学;2013年
8 孙勇;曝气生物滤池工艺在大庆市西城区污水处理厂的应用[D];吉林大学;2009年
9 左艳兵;曝气生物滤池中两种滤料处理性能的比较研究[D];湖南大学;2008年
10 石驰;曝气生物滤池运行影响因素试验研究[D];江苏大学;2007年
,本文编号:2070153
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2070153.html