基于热管和温差发电的船舶烟气余热回收装置设计与研究
发布时间:2018-06-27 14:36
本文选题:船舶节能 + 余热回收 ; 参考:《大连海事大学》2017年硕士论文
【摘要】:船舶作为国际贸易中重要的交通运输工具,在营运时消耗了大量的能源。而船舶主机燃料燃烧产生的能量中,约有25%随烟气排出,造成了大量能源的浪费。为此,船舶烟气余热回收技术的相关研究凸显重要。温差发电技术可直接将热能转换为电能,在提高船舶能源利用率的同时降低了碳排放,且具有结构简单、无污染、维护方便等特点,因而在船舶烟气余热回收上有广阔的研究和应用前景。本文基于温差发电技术与热管的强化传热性能,设计并搭建了利用热管强化传热的温差发电实验装置,在进行了相关理论计算与实验研究的基础上,提出了一种热管式船舶烟气余热温差发电装置。主要工作如下:首先,设计了热管式船舶烟气余热温差发电实验装置,分析了其传热特性,计算了实验装置在传热过程中各部分的热导率,结合温差发电系统的热力学模型,对实验装置的输出性能进行了理论计算,并与实验数据进行对比,以验证该装置原理的可行性和结构的合理性;其次,搭建了温差发电装置实验台。确定了温差发电实验装置的最佳运行模式,并对其在不同工况下的性能进行了分析。在热源温度分别为275℃、300℃与325℃时,温差发电实验装置的最大输出功率分别为39.42 W、47.22 W与53.25 W,热电转换效率分别为4.8%、5.2%与5.5%;第三,对比了在不同冷端与热端传热方式下温差发电实验装置的输出性能,结果表明冷端与热端采用热管强化传热的方式可以提升温差发电装置的输出性能;最后,根据"SDM"轮MAN 6S70MC主机相关参数,计算其烟气余热量,设计了一种热管式船舶烟气余热温差发电装置,该装置由多个温差发电单元构成,每个单位装配有384块温差发电片,单元数可根据船舶烟气余热量的大小进行调节。在船舶烟气温度为325℃:时,一个温差发电单元最大可产生约3.4 kW电能。
[Abstract]:As an important means of transportation in international trade, ships consume a lot of energy. About 25% of the energy generated by ship engine fuel combustion is discharged with flue gas, resulting in a large amount of energy waste. Therefore, the research of ship flue gas waste heat recovery technology is very important. Thermoelectric power generation technology can directly convert heat energy into electric energy, which can improve the energy efficiency of ships and reduce carbon emissions. It has the advantages of simple structure, no pollution, convenient maintenance, etc. Therefore, there is a broad research and application prospect in ship flue gas waste heat recovery. Based on the technology of thermoelectric power generation and the enhanced heat transfer performance of heat pipe, this paper designs and builds an experimental device of thermoelectric power generation using heat pipe to enhance heat transfer. In this paper, a heat pipe type ship flue gas waste heat differential generator is proposed. The main work is as follows: firstly, the experimental device of heat pipe ship flue gas waste heat difference power generation is designed, its heat transfer characteristic is analyzed, the thermal conductivity of each part of the experimental device in the process of heat transfer is calculated, and the thermodynamic model of thermoelectric power generation system is combined. The output performance of the experimental device is calculated theoretically, and compared with the experimental data to verify the feasibility of the principle and the rationality of the structure of the device. Secondly, the experimental platform of the thermoelectric equipment is built. The optimal operation mode of the thermoelectric power generation experimental device is determined and its performance under different operating conditions is analyzed. When the heat source temperature is 275 鈩,
本文编号:2074237
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2074237.html