磷酸锆复盐的微波制备和可见光催化印染废水的应用
[Abstract]:Photocatalysis is a technology for converting sunlight energy into chemical energy and electric energy, and can directly utilize sunlight to degrade various pollutants in water, and has the advantages of low cost, no pollution, no selectivity and reusability and the like. Photocatalytic degradation of printing and dyeing wastewater is a simple and convenient method. However, the commonly used photocatalyst is a wide forbidden zone semiconductor material, and the catalyst has photocatalysis effect only under ultraviolet light, and natural light can not be efficiently utilized. Aiming at the above problems, a visible light photocatalyst is prepared into a core problem in the photocatalysis field. In this paper, two kinds of materials, namely nickel phosphate, nickel phosphate and manganese phosphate were prepared under the open system by microwave-assisted heating, and the best raw materials and technological conditions for preparing manganese phosphate and manganese phosphate were investigated. In this paper, a variety of surfactants are used as template agents to prepare nickel phosphate and manganese phosphate by microwave heating under certain conditions such as pH value and temperature. The effects of phosphorus source, reactant ratio, reactant concentration, reaction pH value, reaction temperature and three kinds of surfactant PVP-K30, CTAB and SDS on the preparation of nickel phosphate and manganese phosphate were discussed. XRD, ICP, XPS, SEM (FESEM), TG and UV-Vis, etc. were used to characterize the contents, elemental contents, valence state, surface morphology, metal content and gap width of manganese phosphate and manganese phosphate. Using Zr OCl _ 2, NH _ 4F, Na H _ 2PO _ 4 and Ni Cl _ 2 as starting materials,[Zr4 +] in the reaction solution is 0. 005mol/ L, the concentration of the remaining reactants is mixed with the proportion of Zr: Ni: F: P = 1: 1: 6: 20. Three kinds of surfactants were added to the reaction solution respectively. 59g PVP-K30, 0.04g CTAB and 0. 29g SDS could be used to prepare nickel phosphate with regular morphology. Phosphorus source, reaction pH, reactant ratio and reactant concentration are important factors affecting the preparation of nickel phosphate. When the phosphorus source or the reaction pH value changes, the morphology of the product plume is observed. When the nickel-to-nickel ratio is higher than 3, the product is a spherical mixture. When the phosphorus-to-phosphorus ratio is less than 10, the morphology of the product plume is improved. When the fluorine content ratio is higher than 10, the product is nickel phosphate. When the concentration of the reactants is too high, the product is a mixture. and the reaction temperature and the surface active agent affect the particle size and the uniformity of the nickel phosphate, and have slight influence on the morphology. As the temperature of the reaction increased, the nickel-phosphate particles were gradually grown, the morphology was gradually regular, and the size was gradually uniform. After addition of the surfactant, the particle size of the product can be reduced. Among them, the inhibition ability of PVP-K30 and CTAB to particle size growth was larger than that of SDS. The addition of PVP-K30, CTAB and SDS as a template aid in the preparation of manganese phosphate, and various morphology can be obtained. The starting materials Zr OCl _ 2, NH _ 4F, Na H _ 2PO _ 4 and Mn Cl _ 2 were mixed at a ratio of Zr: Mn: F: P = 1: 1: 6: 20, respectively. The manganese phosphate prepared under the condition of PVP-K30 is spherical, and the manganese phosphate prepared under the CTAB condition is spherical, and the manganese phosphate prepared under the conditions of SDS is spherical. adding the prepared nickel phosphate and manganese phosphate into two dye solutions of a certain concentration of simulated printing and dyeing wastewater, reacting under photocatalysis for a certain time, measuring the absorbance corresponding to the maximum absorption wavelength, and calculating the decoloring rate of the dye, The photocatalytic properties of both organic pollutants under visible light were discussed. The results showed that the photocatalytic effect of nickel phosphate on MB was up to 49. 0%, and the photocatalytic effect of nickel phosphate on Rh B was up to 11. 3%. The photocatalytic effect of nickel phosphate on MB is better than Rh B. This may be influenced by the molecular structure of dyes, the molecular structure of MB is small, and it is favorable for adsorption to the catalytic degradation reaction on nickel phosphate. It is found that 路 OH, h ~ + and 路 O _ 2 ~-are active substances involved in dye degradation, and 路 OH is the main active material. The photocatalytic effect of manganese phosphate on Rh B was up to 18. 0%. The results showed that both nickel phosphate and manganese phosphate had certain visible light photocatalytic activity. In this paper, a microwave-assisted heating method was used to prepare various morphologies of nickel phosphate and manganese phosphate, and it was used to catalyze the degradation of Rh B or MB dyes by visible light. The results showed that nickel phosphate and manganese phosphate had visible photocatalytic activity. The microwave-assisted preparation method provided by the invention has the characteristics of mild reaction condition, simple operation and the like, is favorable for forming a product with regular appearance, and provides a reference for the preparation of related materials.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X791;O643.36
【相似文献】
相关期刊论文 前10条
1 ;光催化分解硫化氢制氢研究获进展[J];化工进展;2010年02期
2 ;光催化分解硫化氢制氢研究获进展[J];天津化工;2010年01期
3 ;光催化分解硫化氢制氢研究获进展[J];工业催化;2010年02期
4 蔡乃才,简翠英,董庆华;有机羧酸的光催化分解反应[J];感光科学与光化学;1988年04期
5 张谊华,,滕玉美,曾宪康,王涵慧,俞稼镛;光催化分解硫化氢制取氢气的研究[J];感光科学与光化学;1994年02期
6 温福宇;杨金辉;宗旭;马艺;徐倩;马保军;李灿;;太阳能光催化制氢研究进展[J];化学进展;2009年11期
7 张德;;有害的硫化氢污染物可经光催化成有用的氢和硫[J];化学通报;1982年05期
8 ;水洗再生型光催化除臭滤气器[J];现代化工;2001年01期
9 甘欣;赵希娟;覃彪;傅文甫;;Pt(Ⅱ)配合物光催化制氢研究进展[J];中国材料进展;2010年01期
10 吕宏飞;李锦书;单雯妍;白雪峰;;多元金属硫化物催化剂及光催化分解硫化氢的研究进展[J];材料导报;2012年11期
相关会议论文 前10条
1 李旦振;郑宜;付贤智;;微波场助光催化及其应用[A];中国电子学会第七届学术年会论文集[C];2001年
2 殷好勇;金振声;张顺利;张治军;;有机物分子的吸附及光催化分解对水接触角的影响[A];2000'全国光催化学术会议论文集[C];2000年
3 付贤智;;环境光催化基础与应用研究进展[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
4 王崇明;;新时代——吹响了光催化号角[A];第二届全国染整行业技术改造研讨会论文集[C];2004年
5 叶云;王秀丽;冯兆池;李灿;;CdS QDs/Co complex光催化产氢体系的时间分辨光谱研究[A];第十七届全国光散射学术会议摘要文集[C];2013年
6 付贤智;;环境光催化基础与应用研究新进展[A];2004年全国太阳能光化学与光催化学术会议论文集[C];2004年
7 吴季怀;林煜;黄妙良;林建明;黄昀方;殷澍;佐藤次雄;;层状纳米光催化复合材料HNbWO_6/Pt的合成和性质[A];2000'全国光催化学术会议论文集[C];2000年
8 贺攀科;张敏;杨冬梅;董芳;杨建军;;微波-二元醇技术制备Au/TiO_2及其光催化消除臭氧[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年
9 周航月;葛介超;汪鹏飞;;团藻状的Cd_(1-x)Zn_xS纳米球:无模板法制备及其在可见光催化制氢应用[A];第十三届全国光化学学术讨论会论文集[C];2013年
10 李越湘;吕功煊;李树本;;草酸作电子给体光催化分解水制氢[A];2000'全国光催化学术会议论文集[C];2000年
相关重要报纸文章 前2条
1 记者 吴长锋;光催化分解水制氢气展现迷人前景[N];科技日报;2013年
2 蔡维希 蔡忠仁;光催化分解厂房有机污染物项目实施[N];中国化工报;2006年
相关博士学位论文 前10条
1 韦丁;硒化铟和钛酸铟纳微结构调控与光催化制氢性能[D];北京理工大学;2015年
2 伍明;氧化银—氧化锌复合物和改性的类石墨氮化碳的光催化性能研究[D];吉林大学;2015年
3 高洪林;无机离子修饰提高g-C_3N_4光催化性能的研究[D];南京大学;2014年
4 郎笛;硫化镉光催化材料的制备及其可见光催化性能研究[D];华中农业大学;2016年
5 于笑潇;分等级纳米复合光催化材料的制备及其光催化性能研究[D];武汉理工大学;2010年
6 陈秀芳;石墨相氮化碳的制备、表征及其光催化性能研究[D];福州大学;2011年
7 郑艳;铋复合氧化物的合成及其可见光光催化性能研究[D];江南大学;2011年
8 刘美英;钽基氮氧化物上可见光光催化分解水制氢研究[D];中国科学院研究生院(大连化学物理研究所);2006年
9 徐新;水滑石基半导体复合材料的制备及其光催化性能研究[D];北京化工大学;2011年
10 于鹤;SrTiO_3光催化材料光吸收边调控及其光催化产氢性能研究[D];南京大学;2013年
相关硕士学位论文 前10条
1 李鑫;新型MoS_2/TiO_2复合材料的合成及光催化性能探究[D];上海师范大学;2015年
2 王隽;钌基光敏剂的合成及其在TiO_2光催化体系中的催化性能研究[D];郑州大学;2015年
3 李云;上转光剂-NaTaO_3-助催化剂体系在光催化水解制氢中的应用及相关影响因素的研究[D];辽宁大学;2015年
4 李宏颖;TiO_2@酵母微球的调控合成及其催化性能研究[D];长安大学;2015年
5 张亚军;微纳枝状结构ZnFe_2O_4的制备与改性及光催化性能研究[D];哈尔滨工业大学;2015年
6 李孜;氮掺杂碳量子点的荧光分析检测及光催化性能研究[D];北京化工大学;2015年
7 张松;二氧化钛光催化制氢的失活机理研究[D];南京大学;2013年
8 刘辉;多孔SrTiO_3纳米晶的制备及其光催化性能研究[D];南京大学;2014年
9 徐鹏;介孔二氧化钛基复合催化剂的制备及其光催化性能研究[D];吉首大学;2015年
10 何静;铋氧化物及其复合物的制备与光催化性能研究[D];重庆大学;2015年
本文编号:2299256
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2299256.html