常温下接种回流污泥实现BAF一体化自养脱氮工艺
[Abstract]:In order to realize the stable removal of high ammonia nitrogen wastewater with high efficiency and low consumption, the process of realizing and stabilizing autotrophic denitrification in (BAF) of biological aerated filter was studied in this paper. The results showed that under normal temperature, BAF inoculated secondary settling tank reflux sludge, and adopted the method of aeration and continuous operation of inoculation and hanging membrane, which could successfully realize the integrated autotrophic denitrification of short course nitrification-anaerobic ammonia oxidation. In the stage of aeration, the activity of seed mud was restored, and the concentration of free ammonia (FA) was high during the continuous flow operation, which could inhibit the nitrite accumulation of (NOB),. By adjusting the reflux mode of BAF, reducing the NO_2~-N-, in the reflux liquid to prevent the NOB growth, and inoculating the microamount of Anammox bacteria in the effluent of the (Anammox) filter by anaerobic ammonia oxidation, the short-cut nitrification-anaerobic ammonia oxidation could be realized in 80 days. After 140 days, the system was stable and the removal rate of total nitrogen (TN) reached 76.62%. Biofilter is conducive to the realization and stability of short-cut nitrification-anaerobic ammonia oxidation process. Aerobic anoxic environment exists in different thickness of biofilm, which is conducive to the coexistence of (AOB) and Anammox bacteria in the biofilm. The filtration effect of filter media can effectively prevent the loss of Anammox bacteria and make it accumulate and grow in the system. Moreover, both AOB and Anammox bacteria are autotrophic bacteria and grow slowly, which avoids frequent backwashing of biofilter and simplifies the operation of biofilter. The gas-water ratio is the key parameter in the integrated operation of BAF. The optimum air-water ratio in this study is 12: 1, and the removal load of ammonia and nitrogen reaches 0.91 kg N m-3 d-1. The removal rates of ammonia nitrogen and TN were 96.86% and 85.47% respectively.
【作者单位】: 北京工业大学城镇污水深度处理与资源化利用技术国家工程实验室;中国人民大学环境学院;
【基金】:国家自然科学基金项目(51508561)~~
【分类号】:X703.1
【相似文献】
相关期刊论文 前10条
1 李祥;袁怡;黄勇;王勇;;厌氧氨氧化微生物研究进展[J];环境科技;2009年02期
2 郑平;张蕾;;厌氧氨氧化菌的特性与分类[J];浙江大学学报(农业与生命科学版);2009年05期
3 唐崇俭;郑平;;厌氧氨氧化技术应用的挑战与对策[J];中国给水排水;2010年04期
4 孙文汗;杨继刚;;厌氧氨氧化的启动与影响因素[J];辽宁化工;2013年06期
5 王静;郝建安;张爱君;杨波;姜天翔;张雨山;;厌氧氨氧化反应研究进展[J];水处理技术;2014年03期
6 胡细全,刘大银,蔡鹤生;厌氧氨氧化的微生物研究进展[J];上海环境科学;2003年S2期
7 王燕舞,刘康怀;厌氧氨氧化工艺及其应用前景[J];矿产与地质;2004年01期
8 张少辉,王天玖,郑平;厌氧氨氧化研究进展[J];中国沼气;2004年02期
9 胡细全,刘大银,蔡鹤生;厌氧氨氧化的研究及其应用[J];环境污染治理技术与设备;2004年03期
10 杨岚,杨景亮,李再兴,孙斌,陈旭东;厌氧氨氧化技术研究进展[J];河北化工;2004年03期
相关会议论文 前10条
1 路青;张振贤;付秋爽;徐伟涛;党酉胜;;厌氧氨氧化工艺研究进展[A];上海(第二届)水业热点论坛论文集[C];2010年
2 林琳;;含氨废水生物处理-厌氧氨氧化技术启动研究进展[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
3 鲍林林;李刚强;李冬;;常温低基质浓度下磷酸盐对厌氧氨氧化过程的影响[A];河南省化学会2012年学术年会论文摘要集[C];2012年
4 姜昕;马鸣超;李俊;钟佐q,
本文编号:2347793
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2347793.html