藻类水体离水辐射光谱的荧光偏振识别研究
[Abstract]:Algae and other phytoplankton proliferate in eutrophication water, but the percentage of chlorophyll in algae cells is stable. Therefore, chlorophyll concentration is an important index to reflect the eutrophication degree of eutrophication. Chlorophyll molecules in algae cells emit chlorophyll fluorescence in the form of energy release after absorption of light energy, so chlorophyll fluorescence can be used as an important parameter to approximate estimate chlorophyll concentration. Accurate extraction of chlorophyll fluorescence from off-water radiation has great theoretical significance and wide application prospect for remote sensing monitoring of chlorophyll concentration in water body and evaluation of water environment. In the atmospheric ocean system, the incident solar light will be scattered by various molecules, aerosols and hydrosol in the atmospheric ocean system, and also reflected by the sea surface. These processes will change the polarization state of the light. The scattered and reflected sunlight is partially polarized and contains information that can reflect the essential characteristics of aerosols and suspended matter in atmospheric and oceanic systems. The elastic scattering light of particulate matter in water is partially polarized, while chlorophyll fluorescence is non-polarized light. Based on this characteristic and using polarization technique, fluorescence can be separated from the information of total off-water radiation, so that the chlorophyll concentration can be retrieved by remote sensing. However, it is not clear whether this method can be applied to the inshore complex water. Based on this, the different chlorophyll concentration, inorganic particle concentration and incident angle of light source are analyzed by polarization measurement system. The influence of wind on the polarization separation method. In this paper, Chlorella aurantia, Chlorophyta roxburghii and Prorocentrum were selected as experimental algae. The experiment of chlorophyll fluorescence polarization separation under indoor conditions was carried out by means of ground object spectrometer combined with polarizer. The results show that the measurement results are more reliable when the incident zenith angle of the light source is 30 掳-60 掳, and the separation effect is the best when the incidence angle is 45 掳. For algae with different concentrations of chlorophyll, chlorophyll fluorescence can be well separated, but when the concentration of chlorophyll is too low, the error of the separation results is larger, compared with that of high concentration of chlorophyll water, the separation results are more reliable. For algae with different concentrations of inorganic particles, the fluorescence summit showed a decreasing trend with increasing concentration, but when the concentration of particulate matter reached 3 脳 105mg/m3, the inversion results were still reliable. In the case of surface wind, the measured spectral curves fluctuate greatly, but do not affect the fluorescence separation. At the same time, the polarization measurements of red tide water and suspended sediment water are also carried out in Qinhuangdao Sea area. The results show that the polarization separation fluorescence method is still applicable to the red tide water. The results show that the polarization method of chlorophyll fluorescence separation is of great significance for remote sensing detection of chlorophyll concentration and red tide monitoring in coastal waters. In this paper, the relationship between polarization spectral characteristics and remote sensing reflectance is compared and analyzed for the measurement of suspended sediment in situ. It is found that the upstream radiance polarization degree and remote sensing reflectance spectrum are inversely related to each other, which indicates that in the aspect of obtaining ocean water color information, The degree of polarization has a capability similar to that of remote sensing reflectivity.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X52
【相似文献】
相关期刊论文 前10条
1 郑小慎;李桂菊;;渤海湾春季叶绿素浓度分布及环境要素的影响[J];海洋技术学报;2014年02期
2 黄耀欢;江东;庄大方;付晶莹;;汤逊湖水体叶绿素浓度遥感估测研究[J];自然灾害学报;2012年02期
3 赵骞,田纪伟,赵仕兰,吴自库;渤海冬夏季营养盐和叶绿素a的分布特征[J];海洋科学;2004年04期
4 杨璐;高永光;胡振琪;;利用“红边”估算铜胁迫下玉米叶绿素浓度研究[J];矿业研究与开发;2008年05期
5 龚珍;卜晓波;李晔;陈锦凤;;东湖水体叶绿素浓度的遥感反演研究[J];安徽农业科学;2013年11期
6 陈思佳;苏德荣;勾玉莹;曹军;曹忠贵;;高尔夫球场水域蓝藻密度和叶绿素浓度变化——以北京叠泉高尔夫球场为例[J];环境科学与技术;2013年S1期
7 段洪涛;张柏;宋开山;王宗明;张树清;;查干湖叶绿素a浓度高光谱定量模型研究[J];环境科学;2006年03期
8 吕云峰;;水中叶绿素浓度偏振反射光谱特性研究[J];长春师范学院学报(自然科学版);2010年06期
9 唐炎明;用滞后发射的光鉴别水果的成熟度[J];食品科技;1979年04期
10 矫晓阳;叶绿素α预报赤潮原理探索[J];海洋预报;2004年02期
相关会议论文 前7条
1 赵辉;唐丹玲;王素芬;;南海西北部夏季叶绿素浓度的分布特征及其对海洋环境的响应[A];中国海洋学会2005年学术年会论文汇编[C];2005年
2 焦全军;张霞;卫征;陈良富;张兵;;基于叶片光谱的森林叶绿素浓度反演研究[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年
3 包颖;田庆久;;太湖叶绿素a浓度遥感空间尺度关系研究[A];第十七届中国遥感大会摘要集[C];2010年
4 谭俊磊;马明国;宋怡;黄广辉;;基于SLC模型和CHRIS数据的LAI、Cab和fCover反演[A];遥感定量反演算法研讨会摘要集[C];2010年
5 毛志华;黄海清;;CMODIS资料提取叶绿素a浓度的方法研究[A];第六届成像光谱技术与应用研讨会文集[C];2006年
6 鲁韦坤;谢国清;;MODIS监测滇池叶绿素a分布的遥感影像融合研究[A];中国气象学会2008年年会卫星遥感应用技术与处理方法分会场论文集[C];2008年
7 荀尚培;詹万志;范伟;;MODIS巢湖水体叶绿素a浓度监测研究[A];中国气象学会2006年年会“卫星遥感技术进展及应用”分会场论文集[C];2006年
相关博士学位论文 前2条
1 郑龙江;光纤式海藻叶绿素a浓度的荧光测量理论与实验研究[D];燕山大学;2002年
2 李渊;基于数据同化的太湖叶绿素浓度遥感估算[D];南京师范大学;2014年
相关硕士学位论文 前10条
1 马骅;高浊度长江河口水色三要素的光学特征及其对TSM反演的影响[D];华东师范大学;2015年
2 张海东;基于MERIS数据的内陆湖泊叶绿素a浓度反演研究[D];华中师范大学;2016年
3 郭海峡;中国近海叶绿素卫星遥感数据重构及其时空变化特征研究[D];国家海洋局第三海洋研究所;2016年
4 卞淑云;时间序列分析在东海叶绿素浓度研究中的应用[D];杭州电子科技大学;2015年
5 庞卉芳;藻类水体离水辐射光谱的荧光偏振识别研究[D];大连海事大学;2017年
6 刘斌;一类水域中从海面反射比反演叶绿素浓度垂直分布初探[D];中国海洋大学;2009年
7 刘广鹏;长江口及邻近海域叶绿素时空变化及影响机制[D];华东师范大学;2014年
8 吕云峰;水中叶绿素二向性与偏振反射光谱特性的对比研究[D];东北师范大学;2007年
9 张彦U,
本文编号:2364967
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2364967.html