土壤胶体和优势流对镉环境行为的影响
发布时间:2020-03-18 04:54
【摘要】: 通常认为,强吸附性污染物的迁移风险是很低的,但关于它们在土壤和沉积物中长距离迁移的报道却屡见不鲜。这种现象激发了关于促进运输(facilitated transport)和优势流(preferential flow)的研究,目前普遍认为这是提高污染物在地下环境中运移速度的两种主要机制。胶体(包括矿质胶体、有机胶体、生物胶体等)与优势流对污染物环境行为影响的研究起源于胶体促进的放射性核素的迁移,进而发现胶体亦能影响其它污染物的迁移。围绕这一命题国内外已展开了大量对地下环境中胶体的来源、胶体对污染物的吸附、胶体促进的污染物迁移、胶体的固定的研究。然而,胶体对污染物在土壤中环境行为的影响是多方面的。关于胶体对土壤吸附污染物的贡献、胶体对污染物生物有效性的影响的研究还不多见。另外,对于在生命活动旺盛的土壤中普遍存在的优势流研究也仅停留在室内小型土柱或肉眼可见的几种示踪剂上,并且鲜有关于污染物在土壤剖面中究竟如何分布及优势流对污染物迁移的直接影响的报道。因此有必要开展对模拟大孔隙和自然条件下优势流的研究。为此,本文选取Cd作为供试污染物,采用等温吸附试验、动力学试验、生物盆栽试验、模拟大孔隙土柱淋洗试验、田间淋洗试验等方法,系统研究了土壤胶体和优势流对镉在土壤环境中的吸附、迁移和生物有效性等环境行为的影响及其可能机制。主要结果如下: 1、黑土、黄棕壤、水稻土、红壤不同粒级组分(粘粒2μm,粉粒2~20μm,细砂粒20~200μm,粗砂粒200~2000μm)对镉的吸附均表现为:粘粒粉粒粗砂粒细砂粒,且粒级间的差异都达到显著水平;各粒级组分对镉的吸附均符合Langmiur方程和Frendlich方程,吸附量最大的粘粒组分对镉的平均最大吸附量为202.8±64.6 mmol·kg~(-1),粉粒、细砂粒、粗砂粒对镉的最大吸附量分别为135.0±39.2mmol·kg~(-1)、47.0±9.4 mmol·kg~(-1)、81.3±33.7 mmol·kg~(-1),粘粒分别平均是粉粒、细砂粒、粗砂粒的1.53±0.30倍、4.23±0.67倍、2.57±0.55倍;各组分对镉的吸附量之间的差异随着镉的浓度增大而增大。各组分对土壤吸附镉的贡献率为:粉粒(52.2±15.3)粘粒(32.3±14.9)细砂粒(13.8±3.4)粗砂粒(1.7±1.4)(只有红壤中粘粒粉粒),土壤80%~90%的镉吸附在20μm的组分上,粗砂粒的贡献基本可以忽略不计。各因素对吸附的影响大小为:粒级有机质平衡pH,而游离氧化铁无显著影响。建立了最大吸附量和分配系数与各影响因子的多元回归方程: 最大吸附量=-239.098+54.935×粒级赋值+34.261×平衡pH-2.844×游离氧化铁含量+2.215×有机质含量 分配系数=-174.182+26.332×粒级赋值+29.795×平衡pH+1.675×游离氧化铁含量+1.604×有机质含量 2、黄棕壤不同粒级组分(粘粒、粉粒、细砂粒、粗砂粒)对镉的吸附动力学与热力学研究表明,两种温度下(25℃和45℃)各粒级组分对镉的吸附均可分为快反应和慢反应两个阶段,0-15min内为快反应阶段,吸附量达到饱和吸附量的95%以上,此后为慢反应阶段;随着温度由25℃升高到45℃,各组分对镉的饱和吸附量增加了4.86%~25.3%;各组分对镉的吸附动力学符合拉格朗日假二级动力学方程,吸附过程以化学吸附为主;二级动力学吸附速率常数表明,随着各组分粒级增大,吸附速率降低;在试验温度范围内随着温度升高,吸附速率加快;吸附过程的限速步骤为颗粒间扩散;各粒级组分对镉的吸附为吸热反应,反应能自发进行。 3、盆栽试验结果表明:(1)各处理黑麦草株高、地上部干重、根干重、总生物量都表现为胶体原土去胶组分,胶体上总生物量分别平均是原土和去胶组分的1.31±0.02倍和1.82±0.21倍。(2)黑麦草地上部与根中Cd浓度、地上部与根对Cd的富集系数都表现为胶体原土去胶组分,表明Cd的生物有效性胶体原土去胶组分,这主要是各组分的表面性质、有机质含量、pH等的差异引起的。(3)加入EDTA增加了Cd的解吸,导致黑麦草地上部与根中Cd浓度显著增加,黑麦草地上部干重、根干重、总生物量降低,但植株Cd总量与CK相比还是有所上升。EDTA对Cd的活化作用受到各处理pH的强烈影响,表现为去胶组分原土胶体,黄棕壤红壤,EDTA对各处理植株Cd总量的影响与此吻合。至于地上部与根部Cd浓度对EDTA的响应与上述顺序不完全一致则反映了EDTA对不同组分上黑麦草Cd的迁移系数的影响差异:EDTA使黄棕壤胶体和原土Cd的迁移系数显著增加,而对黄棕壤去胶组分和红壤三种基质Cd的迁移系数无显著影响。(4)两种土壤在各方面差异显著,一次平衡试验表明,EDTA浓度为0时,黄棕壤各组分Cd的解吸率分别表现为胶体和原土约为0,去胶组分组分为10.5±3.5%,红壤各组分平均为20.8±1.9%。可以推测这是各处理黑麦草长势及体内Cd浓度差异的直接原因。 4、室内人工大孔隙土柱试验结果表明,大孔隙的存在使Cd的迁移量增加了75%,在10个孔隙体积内大孔隙.对照处理淋滤液中镉的浓度平均是对照处理的106倍。淋洗液中加入胶体和DOM使大孔隙土柱Cd的迁移量分别增加了16%和50%。胶体和DOM对Cd迁移的促进作用在3个孔隙体积内表现得特别明显,淋出液中镉的浓度平均分别是不加胶体或DOM的大孔隙处理的2.47(胶体)和2.66倍(DOM)。 5、田间试验结果表明:土壤剖面具有很大空间变异性,优势流对Cd的迁移起主导作用;Cd在土壤基质中的扩散被限制在几厘米范围内,大孔隙的存在使亮蓝和Cd的迁移距离增加了数十倍;胶体通过在土壤基质毛细管中的堵塞效应和在优势流区域大孔隙壁上的沉积抑制了Cd在土壤中的迁移(约10 cm),而DOM与对照相比使Cd的向下迁移增加了约10-20 cm;三个剖面中亮蓝浓度与交换性镉和全镉浓度间有强烈正相关关系,表明亮蓝与Cd在剖面中迁移的优势流路径非常相似。 总之,胶体对Cd的强烈吸附作用能在一定程度上控制Cd的生物有效性,进而制约Cd进入生物圈,从而降低Cd的环境风险。优势流对Cd的迁移起主导作用,而胶体的不稳定性使得其在真实环境中对Cd的促进迁移作用具有很大的偶然性和瞬时性,特别是不饱和多孔介质中的复杂环境条件对预测胶体及污染物的环境行为将是一巨大挑战。
【图文】:
一层均匀的水膜;第二,大孔隙起结皮。 Rousseauetal.(2004)研究了土壤和淋洗液的物理化学性质(降雨强度、离子强度、初始土壤含水量)对原状土柱(直径0.3m,高0.“m)中自然土壤颗粒活化与迁移的影响(见图1一2)。当淋洗液离子强度最低、渗透速率最高、土壤初始含水量最高时被活化的胶体最多。蜀 aergaardetal.(2004)研究了不同初始水分含量对不同粘粒含量土壤中胶体活化的影响,结果显示,,控制结构化土壤原位胶体活化过程的首要因素是在进行低离子强度降雨时胶体的分散能力。因此,胶体的原位活化是内外因素综合作用的结果,胶体活化的机率与胶体和基质的理化性质以及矿物学组成、土壤初始含水量、入渗溶液的强度、离子强度、pH
体在矿物颗粒上的沉积进行定量。就像土壤表面,不饱和多孔介质中的气一液界面能够充当胶体颗粒“搜集者”的角色(见图1一5)。运移至气一液界面的胶体通过表面张力或静电力被保留。因此,气一液界面对胶体的俘获依赖于pH、离子强度及胶体的表面性质。随着离子强度增加,带负电荷的气一液界面与相同电荷的矿物胶体间的斥力壁垒呈指数下降,从而使附着条件更有利,气一液界面对胶体的俘获速率加快。与矿物胶体相比,一些具有相对疏水性表面的疏水性胶体(如细菌)表现出与气一液界面更强的亲和力。矿物胶体与气一液界面的亲和力取决于胶体的形状、表面电荷分布,并与胶体的cEc呈反相关(Denovio,etal.,2004)。胶体的水膜张力俘获 (filmstraining)通常发生在水流通道太窄而胶体不能通过的情况下。早期关于水饱和多孔介质中胶体通过孔隙水膜张力滤除的研究表明
【学位授予单位】:南京农业大学
【学位级别】:博士
【学位授予年份】:2007
【分类号】:X53
本文编号:2588246
【图文】:
一层均匀的水膜;第二,大孔隙起结皮。 Rousseauetal.(2004)研究了土壤和淋洗液的物理化学性质(降雨强度、离子强度、初始土壤含水量)对原状土柱(直径0.3m,高0.“m)中自然土壤颗粒活化与迁移的影响(见图1一2)。当淋洗液离子强度最低、渗透速率最高、土壤初始含水量最高时被活化的胶体最多。蜀 aergaardetal.(2004)研究了不同初始水分含量对不同粘粒含量土壤中胶体活化的影响,结果显示,,控制结构化土壤原位胶体活化过程的首要因素是在进行低离子强度降雨时胶体的分散能力。因此,胶体的原位活化是内外因素综合作用的结果,胶体活化的机率与胶体和基质的理化性质以及矿物学组成、土壤初始含水量、入渗溶液的强度、离子强度、pH
体在矿物颗粒上的沉积进行定量。就像土壤表面,不饱和多孔介质中的气一液界面能够充当胶体颗粒“搜集者”的角色(见图1一5)。运移至气一液界面的胶体通过表面张力或静电力被保留。因此,气一液界面对胶体的俘获依赖于pH、离子强度及胶体的表面性质。随着离子强度增加,带负电荷的气一液界面与相同电荷的矿物胶体间的斥力壁垒呈指数下降,从而使附着条件更有利,气一液界面对胶体的俘获速率加快。与矿物胶体相比,一些具有相对疏水性表面的疏水性胶体(如细菌)表现出与气一液界面更强的亲和力。矿物胶体与气一液界面的亲和力取决于胶体的形状、表面电荷分布,并与胶体的cEc呈反相关(Denovio,etal.,2004)。胶体的水膜张力俘获 (filmstraining)通常发生在水流通道太窄而胶体不能通过的情况下。早期关于水饱和多孔介质中胶体通过孔隙水膜张力滤除的研究表明
【学位授予单位】:南京农业大学
【学位级别】:博士
【学位授予年份】:2007
【分类号】:X53
【引证文献】
相关硕士学位论文 前1条
1 曹存存;红壤胶体对铀(Ⅵ)的吸附性能研究[D];南华大学;2012年
本文编号:2588246
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2588246.html