【摘要】:氧化型含锌危险废物会对环境造成严重的危害,因此无害化、资源化处理氧化型含锌危险废物势在必行,本着改善环境质量,缓解锌需求量急剧增加与锌精矿资源日趋枯竭的矛盾、克服传统湿法提锌工艺的缺陷目的,本论文基于锌的强碱介质选择性浸出、低电解能耗优势,对氧化型含锌危险废物的碱浸—净化—电解—苛化生产金属锌粉技术展开了系统地研究。通过优化浸取条件、彻底净化杂质、高值化电积回收等技术,使碱浸—电解工艺的工业化应用取得良好环境和经济效益,并得到以下主要结论: (1)构建了Zn(Ⅱ)-NaOH-H2O体系热力学模型,在强碱性溶液中,锌是以zn(OH)42-和ZnO22-形式存在的,并确定了锌的平衡浓度与碱浓度的关系,用实验进行验证,测得在不同碱浓度下,锌的平衡浓度计算值和实验值相对偏差的绝对平均值为0.1298%,说明热力学模型是正确的。 (2)氧化型含锌废料强碱浸取时,含锌烟灰原料最佳浸出条件为:NaOH浓度6mol/L、温度90℃、浸出时间120min、液固比10:1、颗粒直径100~160目、搅拌速率为300r/min,锌浸出率可达90%以上:ZnCO3原料最佳浸取条件为:NaOH浓度6mol/L、温度90℃、浸出时间120min、液固比10:1、颗粒直径100~160目、搅拌速率450r/min,锌浸出率超过90%;Zn2Si04原料最佳浸取条件为:NaOH浓度8mol/L、温度90℃、浸出时间240min、液固比8:1、颗粒直径100-160目、搅拌速率450r/min,锌浸出率接近85%。浸取参数对锌浸出影响大小的顺序分别为:ZnO原料,RTCNaOHDtV;ZnC03原料,RTVDCNaOHt;Zn2Si04原料,tVTRCNaOHD。 (3)含锌烟灰在强碱性溶液中的活化能为42.00kJ/mol、碳酸锌矿的活化能为43.15kJ/mol,表明碱浸取含锌烟尘和碳酸锌矿过程主要受化学反应控制;硅酸锌矿在碱溶液中的浸出过程分为两段,在0~10min内其活化能为13.59kJ/mol,表明在浸取开始段内是受内扩散控制,浸出后端其活化能为31.86kJ/mol,表明浸取后段的过程是受化学反应和内扩散共同控制。 (4)硫化钠可选择性定量分离强碱性溶液中的铅锌,并发现硫酸铁、硫酸钠、氧化钙对强碱性溶液中的砷、铝等杂质具有一定的净化作用,以此提出了浸出液深度净化工艺:将浸取液升温到70℃,加入硫化钠,硫化钠的加入量为浸取液中铅含量的1.8倍(质量比),搅拌1.5h;加入硅酸钠,硅酸钠的加入量为每升浸取液1.5g,搅拌1h;加入硫酸铁,硫酸铁的加入量为每升浸取液1g,搅拌1h;再加入石灰,石灰的加入量为硫化钠加入量的0.8倍,搅拌1h;静置4h,过滤,输送入陈化池陈化48小时后电解。 (5)对Zn(Ⅱ)-NaOH-H2O体系中锌电积理论分解电压进行了计算,在强碱性溶液中锌电积的理论分解电压为1.728V,比传统硫酸锌溶液锌电积分解电压低0.352V;其锌电积的最佳工艺条件为:电流密度800~1000A/m2,碱浓度180~200g/L,电解温度30-50℃,锌浓度30-40g/L,电流效率可达99%以上,电能耗为2.38kWh/kg锌粉;锌在阴极板上析出时,增加电流密度、降低溶液温度,锌粉从麦穗状向具有更大比表面积的薄片状转变;增大电解液碱浓度,锌粉从薄片状向层状、石块状转变;电解液锌浓度越大,越易形成粒径较大的锌粉。 (6)研究了As、Cl-、SiO32-、SO42、CO32-、F-、Al、Pb、 Mg、Fe、Ni、Mn、Ca、Cd、Cr、Cu等对电解金属锌粉的影响,确定电解液中杂质许可的浓度范围。 (7)提出了废电解液的苛化处理工艺:在废电解液中加入碱,使碱浓度达到350g/L,通过提高碱浓度使碳酸钠和一些杂质结晶生成沉淀。在沉淀中加入洗渣水等废水,控制苛化液的碱浓度在80-100g/L范围内,碳酸钠的浓度在40g/L以上。苛化工艺参数确定为:氧化钙的加入量为理论值的1.5~1.8倍;温度为90℃;苛化时间为30min;废电解液经过苛化处理后,1m3的废电解液可苛化出约28kg碱,废电解液在经过苛化处理后,废液中的铁、铜、镁、锰、镉、铬等重金属的去除率在10-40%左右,对砷的去除率达到62%,废电解液苛化工艺具有较好的除杂效果。 (8)设计了年处理1万吨氧化型含锌危险废料再生加工厂,对磨矿、浸取、净化、电解、锌粉清洗干燥粉碎工艺段的设备进行了最优化设计。根据设计建成的某锌废料再生加工厂锌浸取率达到90%以上,生产的金属锌粉能达到国家锌粉二级标准,运营状况良好。 (9)经过碱浸处理的氧化型含锌危险废料变为一般固体废弃物,实现了无害化,对环境的危害大大降低。 总之,无论从经济效益、环境效益还是社会效益方面含锌危险废物的碱浸—电解—制备金属锌粉工艺比传统锌粉生产方法更具有竞争优势,它可以利用酸法炼锌不能利用的含氟、氯、硅的贫杂氧化锌矿和含锌废料,是氧化型含锌危险废料的全湿法清洁工艺,具有广阔的工业化应用前景。
【学位授予单位】:中南大学
【学位级别】:博士
【学位授予年份】:2011
【分类号】:X70
【参考文献】
相关期刊论文 前10条
1 颜炜;湿法炼锌中电解过程添加剂的选择[J];四川有色金属;2004年02期
2 蒋继穆;;我国锌冶炼工业进展概况[J];中国有色建设;2007年02期
3 刘志宏;国内外锌冶炼技术的现状及发展动向[J];世界有色金属;2000年01期
4 马永刚;铅锌精矿短缺制约我国铅锌工业长足发展[J];世界有色金属;2002年02期
5 葛振华;我国铅锌资源现状及未来的供需形势[J];世界有色金属;2003年09期
6 兰兴华;;硫化锌精矿流化床焙烧过程中的矿物形态变化[J];世界有色金属;2005年12期
7 邓昕;;国外铅锌资源概览[J];世界有色金属;2008年10期
8 李清文,努尔买买提,夏熙;碱性介质中电沉积制备锌粉[J];电池;1997年01期
9 马茁卉;;我国锌资源形势分析及可持续利用[J];当代经济;2010年20期
10 侯新刚,王胜,王玉棉;超细活性锌粉的制备与表征[J];粉末冶金工业;2004年01期
相关博士学位论文 前2条
1 王云燕;Zn-Fe合金电镀和Zn-Fe-TiO_2复合电镀工艺及基础理论研究[D];中南大学;2002年
2 王瑞祥;MACA体系中处理低品位氧化锌矿制取电锌的理论与工艺研究[D];中南大学;2009年
相关硕士学位论文 前3条
1 孙永峰;浮选尾矿中锌资源的综合利用试验研究[D];昆明理工大学;2002年
2 徐毅;片状锌粉制备研究[D];中南大学;2004年
3 邵琼;从低锌高镉渣中回收有价成分新工艺及其动力学研究[D];云南师范大学;2004年
本文编号:
2789210
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2789210.html