刺槐中慢生根瘤菌对铜的吸附特性及抗性机制研究
发布时间:2020-10-14 00:42
本论文利用从中国甘肃省金属尾矿分离到的根瘤菌作为生物吸附剂材料去除污染水体环境中的铜,系统的研究了铜耐受菌株的生物吸附特性和吸附机理,拟为重金属污染环境的修复与治理提供新的材料和方法。 从甘肃省金属尾矿区豆科植物刺槐根瘤中共分离得到73株根瘤菌,其中菌株CCNWGS0123对铜的抗性较高,它可在pH4.0和pH10.0的培养基上生长,耐6%浓度的氯化钠,可利用琥珀酸钠、丙酮酸钠、丙二酸钠、D-木糖、半乳糖、D-果糖、丙酸钠、L-阿拉伯糖、D-核糖、鼠李糖、甘露糖、麦芽糖、柠檬酸钠、醋酸钠、葡萄糖、蔗糖、乳糖和肌醇为唯一碳源;利用半胱氨酸、L-天门冬酰胺、DL-α-氨基酸、L-甲硫氨酸、DL-组氨酸、天冬氨酸、丙氨酸、L-胱氨酸和L-谷氨酸为唯一氮源;能够抗300μg/ml氨苄西林、300μg/ml氯霉素、100μg/ml卡那霉素、100μg/ml氨苄西林钠、300μg/ml林可霉素、50μg/ml硫酸链霉素和5μg/ml丁胺卡那霉素;菌株CCNWGS0123可在含有2.2mM铜、0.1%甲基橙、0.2%溴酚蓝、0.2%刚果红和0.2%中性红的培养基上生长;可在YMA上产过氧化氢;16S rRNA、nodA、nodC和nifH基因序列分析,确定该菌株属于Mesorhizobium amorphae。 在菌株CCNWGS0123对铜离子的吸附特性研究中发现,其活细胞和死细胞均可作为一种生物吸附剂去除水溶液中铜污染;在pH为5.0,转速为150rpm,温度为28°C时,铜的去除率最高,30分钟到达吸附平衡。吸附等温线拟合表明,Langmuir方程比Freundlich吸附式更适于拟合吸附过程。在菌体接种量为100mg/l和铜离子初始浓度为0.5g/l时,铜离子的去除率最高。傅立叶红外光谱(FT-IR)分析表明,细胞壁上O-H、N-H、C-H、C=O、-NH、-CN、C-N、C-O、酰胺(-I、-II、-III)、不饱和烯烃、烷基和芳香团等官能团参与了菌体和铜的相互作用。扫描电镜(SEM)显示,铜胁迫下细胞出现变形、聚集及细胞表面受损等现象。X-射线扫描能谱(EDX)分析结果显示,在1.1keV,8.1keV和8.9keV处出现了三个明显的吸收峰,表明细胞表面有铜的吸附。此外,铜的富集与细胞生长和生物量的增加有关,菌株是可能通过产生胞内多糖,将铜离子固定在细胞内,或通过在细胞外和细胞壁上分泌化合物螯合铜离子。 本研究是用M. amorphae CCNWGS0123作为铜离子吸附剂的首次研究,该菌株不仅可与刺槐作为共生固氮促进植物生长,改善土壤营养条件,还可以作为生物修复体系去除污染土壤中的铜。该研究系统的阐明了CCNWGS0123作为吸附剂移除铜离子特性和机制,发现使用少量的菌体(活细胞和死细胞)进行生物吸附去除水体中的铜是一个经济、环保的途径,可用于水体污染处理材料。
【学位单位】:西北农林科技大学
【学位级别】:博士
【学位年份】:2012
【中图分类】:X703;X172
【文章目录】:
ABSTRACT
摘要
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS / ABBREVIATIONS
CHAPTER I REVIEW OF LITERATURE AND AIM OF STUDY
1.1 Heavy metal pollution
1.2 Copper
1.3 Heavy metal treatment technique
1.4 Brief view on conventional waste stream treatments
1.5 Bio-based methods for waste water treatment and environment restoration
1.6 Quantifying metal-biomass interaction
1.6.1 Sorption isotherms
1.7 Biosorption mechanism
1.8 Instrumental analysis of heavy metal binding
1.8.1 Fourier Transform-Infrared Spectroscopy (FT-IR)
1.8.2 Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDX)
1.9 Factor affecting biosorption
1.9.1 Initial solute concentration
1.9.2 Dosage
1.9.3 pH
1.9.4 Agitation speed
1.9.5 Temperature
1.10 Future thrusts in biosorption
1.11 Aim of study
CHAPTER II ISOLATION AND CHARACTEZATION OF HEAVY METALRESISTANT STRAIN CCNWGS0123 ISOLATED FROM ROOTNODULE OF MINE TAILINGS IN CHINA
2.1 Introduction
2.2 Materials & Methods
2.2.1 Isolation of Rhizobium strains from contaminated soils
2.2.2 Screening test for heavy metal-resistant strains
2.2.3 Characterization and identification of isolated strain
2.2.4 Phytoremediation
2.3 Results and Discussion
2.3.1 Isolation and screening of copper-resistant rhizobia
2.3.2 Characterization and identification of strain CCNWGS012328
2.3.3 Effects of copper on the symbiotic interaction of M. amorphae CCNWGS0123 strain
2.4 Conclusion
CHAPTER Ⅲ BIOSORPTION OF COPPER (II) FROM AQUEOUS SOLUTION USINGLIVING AND NON LIVING MESORHIZOBIUM AMORPHAE STRAINCCNWGS0123
3.1 Introduction
3.2 Materials and Methods
3.2.1 Preparation of the bacterial biosorbents and copper stock solution
3.2.2 Effect of initial copper concentration and biosorption dose
3.2.3 Effect of pH, agitation speed and temperature on biosorption process
3.2.4 Biosorption Isotherm
3.2.5 Time-course of biosorption
3.3 Results and Discussion
3.3.1 Initial copper concentration
3.3.2 Dosage
3.3.3 Influence of pH
3.3.4 Effects of agitation speed
3.3.5 Effects of temperature
3.3.6 Biosorption Isotherm
3.3.7 Time course biosorption
3.4 Conclusions
CHAPTER Ⅳ THE MECHANISM OF COPPER BIOSORPTION AND BIOACCUMULATION BY CCNWGS0123 STRAIN
4.1 Introduction
4.2 Martial & Methods
4.2.1 Study with Fourier Transform Infrared spectroscopy (FT-IR)
4.2.2 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Scanning (EDX) Analysis
4.2.3 Bioaccumulation of copper in MesorhizobiumAmorphae CCNWGS0123
4.3 Results and Discussion
4.3.1 FT-IR analysis
4.3.2 SEM/ EDX analysis
4.3.3 Cu (Ⅱ) Bioaccumulation
4.4 Conclusion
REFERENCES
APPENDIX A
APPENDIX B
PERSONAL STATMENT
【参考文献】
本文编号:2839925
【学位单位】:西北农林科技大学
【学位级别】:博士
【学位年份】:2012
【中图分类】:X703;X172
【文章目录】:
ABSTRACT
摘要
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS / ABBREVIATIONS
CHAPTER I REVIEW OF LITERATURE AND AIM OF STUDY
1.1 Heavy metal pollution
1.2 Copper
1.3 Heavy metal treatment technique
1.4 Brief view on conventional waste stream treatments
1.5 Bio-based methods for waste water treatment and environment restoration
1.6 Quantifying metal-biomass interaction
1.6.1 Sorption isotherms
1.7 Biosorption mechanism
1.8 Instrumental analysis of heavy metal binding
1.8.1 Fourier Transform-Infrared Spectroscopy (FT-IR)
1.8.2 Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDX)
1.9 Factor affecting biosorption
1.9.1 Initial solute concentration
1.9.2 Dosage
1.9.3 pH
1.9.4 Agitation speed
1.9.5 Temperature
1.10 Future thrusts in biosorption
1.11 Aim of study
CHAPTER II ISOLATION AND CHARACTEZATION OF HEAVY METALRESISTANT STRAIN CCNWGS0123 ISOLATED FROM ROOTNODULE OF MINE TAILINGS IN CHINA
2.1 Introduction
2.2 Materials & Methods
2.2.1 Isolation of Rhizobium strains from contaminated soils
2.2.2 Screening test for heavy metal-resistant strains
2.2.3 Characterization and identification of isolated strain
2.2.4 Phytoremediation
2.3 Results and Discussion
2.3.1 Isolation and screening of copper-resistant rhizobia
2.3.2 Characterization and identification of strain CCNWGS012328
2.3.3 Effects of copper on the symbiotic interaction of M. amorphae CCNWGS0123 strain
2.4 Conclusion
CHAPTER Ⅲ BIOSORPTION OF COPPER (II) FROM AQUEOUS SOLUTION USINGLIVING AND NON LIVING MESORHIZOBIUM AMORPHAE STRAINCCNWGS0123
3.1 Introduction
3.2 Materials and Methods
3.2.1 Preparation of the bacterial biosorbents and copper stock solution
3.2.2 Effect of initial copper concentration and biosorption dose
3.2.3 Effect of pH, agitation speed and temperature on biosorption process
3.2.4 Biosorption Isotherm
3.2.5 Time-course of biosorption
3.3 Results and Discussion
3.3.1 Initial copper concentration
3.3.2 Dosage
3.3.3 Influence of pH
3.3.4 Effects of agitation speed
3.3.5 Effects of temperature
3.3.6 Biosorption Isotherm
3.3.7 Time course biosorption
3.4 Conclusions
CHAPTER Ⅳ THE MECHANISM OF COPPER BIOSORPTION AND BIOACCUMULATION BY CCNWGS0123 STRAIN
4.1 Introduction
4.2 Martial & Methods
4.2.1 Study with Fourier Transform Infrared spectroscopy (FT-IR)
4.2.2 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Scanning (EDX) Analysis
4.2.3 Bioaccumulation of copper in MesorhizobiumAmorphae CCNWGS0123
4.3 Results and Discussion
4.3.1 FT-IR analysis
4.3.2 SEM/ EDX analysis
4.3.3 Cu (Ⅱ) Bioaccumulation
4.4 Conclusion
REFERENCES
APPENDIX A
APPENDIX B
PERSONAL STATMENT
【参考文献】
相关期刊论文 前1条
1 ;Biosorption of Cu(Ⅱ) on extracellular polymers from Bacillus sp.F19[J];Journal of Environmental Sciences;2008年11期
本文编号:2839925
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2839925.html