基于生物技术创新调节下生物质消费量、经济增长与环境的关系研究:中日对比分析
发布时间:2020-10-16 05:47
2018年,二氧化碳排放量一直居高不下,相关研究预计,2019年二氧化碳排放量将增加。此外,可持续的经济增长受到矿物原料枯竭的威胁。因此,急需解释哪些因素增加了碳排放和促进了可持续的经济增长。面对这个全球性挑战的一个可能的解决方案是生物质的使用,它是地球上最多的可再生能源。此外,生物质有多种用途,包括食品、饲料、燃料、原料、纤维和肥料。由于2018年二氧化碳排放的增加以及对可持续经济增长的影响,故生物质的应用变得更加重要。尽管如此,关于生物质消耗、经济增长和二氧化碳排放之间的关系的实证研究,还比较缺乏。此外,少量研究虽然研究了它们之间的关系,但忽略了一个重要的变量,及生物技术。这将提高生物质生产和加工的效率,促进生物质对减少二氧化碳排放和促进可持续经济发展的贡献。正是在这种背景下,我们对这个问题的研究就非常重要。本研究基于生物技术的调节作用,重点研究日本和中国的生物质消费量、经济增长和环境污染之间的关系。本文的研究实现了以下目标:(1)本文将日本和中国两个国家作为发达经济体和新兴经济体的样本,研究了基于生物技术调节作用下的生物质消费量、经济增长和二氧化碳排放之间的关系。(2)在生物质消费量和生物技术创新的影响条件下,本文研究了扩展型环境库兹涅茨曲线理论(EKCT)的有效性。(3)本文验证了技术扩散理论在中国、日本生物技术创新的有效性。(4)本文以日本和中国为例,研究了两个国家生态经济与经济发展的因果关系。(5)本文以日本和中国为例,预测了两国在生物质消费量的影响条件下二氧化碳排放和经济增长的情况。(6)最后对比并分析了日本和中国在生物质消费量的影响条件下二氧化碳排放与经济增长的关系。为了进行实证分析,本文首先进行了前测,如单位根检验、结构破坏性试验、正态性检验等,以告知相关研究者,本文研究使用的是合理的分析工具。在前测的基础上,本文采用了动态最小二乘法(DOLS)、格雷戈里-汉森结构协整(GHSC)、自回归分布滞后(ARDL)界域检验等最新的计量经济学方法。除上述最新技术外,本研究与其他类似研究不同,因为本文采用了最新研发的非线性ARDL模型的界域检验作为稳健性检验。与ARDL模型不同,即使时间序列是非线性的,非线性ARDL模型也能够检测出研究对象的相互关系。非线性ARDL模型包含了自变量正负变化对因变量产生不对称影响的可能性。然而,如果解释变量正负变化的不对称效应相同,则非线性ARDL模型与标准对称的ARDL模型是一样的。因此,本研究将长期和短期的非线性ARDL模型的计算结果作为ARDL估计的稳健性检验。ARDL被应用于许多研究中,但如果时间序列是非线性的,ARDL可能会产生错误的估计值,因此非线性ARDL模型是首选的。本研究也利用了VECM格兰杰因果关系检验来确定本研究变量之间的因果关系。在预测方面,本研究采用方差分解分析法来预测未来14年生物质消费量、生物技术创新、经济增长和二氧化碳排放之间的关系。为了确定我们用来预测二氧化碳排放和经济增长的变量是否适合这样的预测,本研究采用了神经网络模型计算均方误差(MSE)和回归值(R-squared)。结果显示,变量能够预测日本和中国在二氧化碳排放和经济增长之间的关系。本文的研究应用了一系列检验测试来检验本文所使用的模型的稳健性。检验结果表明,除了异方差问题外,本研究没有偏离重要的标准假设。为了纠正可能导致无效估计的异方差性,本文的研究参考了现有文献(NeweyWest,1986),并使用了标准误差,基于西沃兹信息准则(SIC)来估计系数。本文主要使用1970年至2016年世界银行的指标数据。本文以日本和中国为例,研究了两国基于生物技术调节作用下生物质消费量、经济增长和二氧化碳排放之间的关系。研究发现,对中国的经济增长所提出的假设得到了实证支持,即生物质消费量和生物技术创新促进了中国的经济增长。研究还发现,生物质消费量和生物技术创新导致了中国的二氧化碳排放量显著减少。我们的研究结果表明,中国可以同时实现经济增长和环境可持续性。然而,在对日本的研究中发现了不同的结果。本研究证实了日本的中立性假设,即生物质消费量和生物技术创新对日本经济增长没有任何影响,反之亦然。此外,本研究证实了,在中国引入生物质消费量和生物技术时,环境库兹涅茨曲线(EKC)的扩展形式的应用。研究发现,从长远来看,在中国,当生物质消费量和生物技术以EKC的扩展形式结合在一起时,二氧化碳排放量和GDP之间有一个倒N形的关系。倒N型理论的依据是一个经济转变的过程,其经济转变是从一个受污染较轻的农业型向一个工业经济基础型转变的过程,与中国的情况一样,中国从受污染相对较重向受污染较轻的服务业转变。生物质消费量和生物技术创新的统计意义强调了急需发展中国的一些经济领域,这些经济领域是以寻求可持续经济增长为主的领域。在日本,研究证实,从长远来看,当生物质消费量和生物技术被纳入经济增长与环境污染的关系中时,GDP增长和二氧化碳排放之间存在N型的路径关系。本研究与近期其他地区的研究相一致。本文研究了中国和日本的生物技术创新的非线性趋势模式。本文证实了罗杰斯的信息扩散理论所假设的S型模式。研究发现,中国的生物技术创新还没有达到成熟阶段,根据信息扩散理论,其增长率将逐渐趋缓然后下降。研究表明,依然存在很多实际上尚未采纳生物技术创新的生物技术创新研究者。中国应继续推进生物技术创新和应用,这将反过来为中国的生物质生产产品以及使用提升效率。从日本的情况来看,我们的研究未能证实信息扩散理论,因为图中没有描绘出近几年生物技术应用中的S形关系。为了更全面、更深入地研究,本文对日本和中国的生态经济与经济发展之间的关系进行了研究。在日本,研究发现林业和林业产品,如木材和木质产品,极大地促进了日本生态经济增长。研究也发现了从日本生态经济到GDP的单向因果关系。这证实了经济增长假设,即日本应开始发展生态经济以实现可持续的经济增长。在中国,研究发现,对中国经济增长领域做出主要贡献的生态经济的细分领域是制造业,如木材和木制品制造业。与日本的情况一样,本研究证实了中国的经济增长假设。这意味着中国应该采取扩张性的生态经济政策来推动可持续的经济增长。为此,本研究预测了在生物质消费量和生物技术的影响条件下未来14年的经济增长和二氧化碳排放之间的关系。总之,我们预计,生物质消费量和生物技术创新将会影响中国和日本的二氧化碳排放和经济增长。特别地,我们预计,到2030年末,生物质消费量和生物技术的应用,将会促进中国经济5%的增长;同时,将会促进日本经济12.3%的增长。我们也预测,截至2030年末,生物质消费和生物技术将会增加中国6.7%的二氧化碳排放,增加日本4.6%的二氧化碳排放。
【学位单位】:江苏大学
【学位级别】:博士
【学位年份】:2019
【中图分类】:X22;F124;F131.3
【文章目录】:
ABSTRACT
摘要
CHAPTER1:INTRODUCTION
1.1 Background and Significance of the Study
1.2 Contribution of the Study
1.3 Research Objectives
1.4 Research Question
1.5 The Main Content of the Dissertation
1.6 Innovation of the Study
CHAPTER2:LITERATURE REVIEW AND RELATED THEORIES
2.1 Literature Review
2.1.1 The Development of the Concept of Bioeconomy
2.1.2 The Concept of Biomass
2.1.3 The Concept of Sustainability
2.1.4 The Relationship Between Biomass Consumption and Economic Growth
2.1.5 The Relationship Between Biomass Consumption and Carbon Dioxide
2.1.6 Relationship Among Variables Within the Extended Kuznets Curve
2.1.7 Arising Criticism of the Concept of Biomass
2.2 Related Theories
2.2.1 Environmental Kuznets Curve(EKC)
2.2.2 Energy Consumption–Economic Growth Hypothesis
2.2.3 Technological Diffusion Theory
CHAPTER3:CONCEPTUAL FRAMEWORK AND HYPOTHESIS DEVELOPMENT
3.1 The Conceptual Framework
3.2 Related Hypothesis
3.2.1 Biotechnology Related Hypothesis
3.2.2 Biomass Consumption and The Kuznets Curve in China And Japan
3.2.3 Biotechnological Innovations Adoption in China and Japan
3.2.4 Capitalization Related Hypothesis
3.2.5 Globalization Related Hypothesis
3.2.6 Trade Related Hypothesis
3.2.7 Urbanization Related Hypothesis
CHAPTER4:DATA AND METHODS
4.1 Profile of Study Area
4.2 Research Philosophy
4.3 Data Sources
4.3.1 Main Variables of the Study
4.3.2 Control Variables
4.4 Methods of Analysis
4.4.1 Procedure for Preliminary Analysis for Econometric Techniques
4.4.2 Procedure for Preliminary Analysis for Principal Component Analysis
4.5 Description of Methods for Stated Objectives and Hypothesis Testing
2 Emissions'> 4.5.1 Biomass Consumption,Biotechnology,Economic Growth And CO2 Emissions
4.5.2 The Impact of Biomass Consumption on the EKC Hypothesis
4.5.3 Biotechnological Innovations Adoption in China And Japan
4.5.4 The Causal Relationship of Bioeconomy and Economic Growth
4.5.5 Modelling the Artificial Neural Networks
4.5.6 Prediction of Direction of Causal Relationship Among the Variables
CHAPTER5:PRELIMINARY RESULTS
5.1 Preliminary Results from China
5.1.1 Descriptive Statistics
5.1.2 The Trend Analysis
5.1.3 Unite Root Test for China
5.1.4 Structural Break Test
5.1.5 Result from Principal Component Analysis(PCA)
5.1.6 Summary of Principal Component Analysis
5.2 Preliminary Results from Japan
5.2.1 Descriptive Statistics
5.2.2 The Trend Analysis
5.2.3 Unite Root Test for Japan
5.2.4 Result from Principal Component Analysis(PCA)
CHAPTER6:RESULTS AND DISCUSSIONS
6.1 Biomass Consumption,Biotechnology,GDP and CO2 Emissions in Japan and China
6.1.1 Auto-Regressive Distributed Lag(AARDL) and Nonlinear ARDL for China
6.1.2 Auto-Regressive Distributed Lag(ARDL)and Nonlinear ARDL for Japan
6.1.3 Estimated Short-Run and Long-Run Cointegrating Forms
6.2 The Causal Linkages Among Variables
6.2.1 The Causal Linkages Among Variables in China
6.2.2 The Causal Linkages Among Variable in Japan
6.3 The Impact of Biomass Consumption on the Extended Kuznets Curve
6.3.1 The Impact of Biomass Consumption on Extended Kuznets Curve in China
6.3.2 The Impact of Biomass Consumption on Extended Kuznets Curve in Japan
6.4 Biotechnology Adoption in China and Japan
6.4.1 Biotechnology Adoption in China
6.4.2 Biotechnology Adoption in Japan
6.5 The Contribution of Bioeconomy on the GDP of Japan
6.5.1 The Contribution of Bioeconomy on the GDP of Japan
6.5.2 The Contribution of Bioeconomy on the GDP of China
6.6 Prediction of Carbon Dioxide Emission and Economic
6.6.1 Determination of Predictors for Economic Growth and CO2 Emission Through Artificial Neural Network
6.6.2 Prediction of Economic Growth in China
6.6.3 Prediction of CO2 Emission in China
6.6.4 Prediction Economic Growth in Japan
6.6.5 Prediction of CO2 Emission in Japan
6.6.6 Impuls Response Function in China
6.6.7 Impuls Response Function in Japan
CHAPTER7:COMPARISON OF FINDINGS BETWEEN CHINA AND JAPAN
7.1 Comparison of Findings Between China and Japan
7.2.Comparison of Predictions
CHAPTER8:CONCLUSION AND LIMITATION OF THE STUDY
8.1 The Main Conclusions of the Study
8.2 Policy Implication of the Study
8.3 Limitation of the Study
References
Appendix1:List of Selected Bioeconomy Sectors
Appendix2:Matlab Codes for Neural Network
Appendix3:List of Publications
Acknowledgements
本文编号:2842858
【学位单位】:江苏大学
【学位级别】:博士
【学位年份】:2019
【中图分类】:X22;F124;F131.3
【文章目录】:
ABSTRACT
摘要
CHAPTER1:INTRODUCTION
1.1 Background and Significance of the Study
1.2 Contribution of the Study
1.3 Research Objectives
1.4 Research Question
1.5 The Main Content of the Dissertation
1.6 Innovation of the Study
CHAPTER2:LITERATURE REVIEW AND RELATED THEORIES
2.1 Literature Review
2.1.1 The Development of the Concept of Bioeconomy
2.1.2 The Concept of Biomass
2.1.3 The Concept of Sustainability
2.1.4 The Relationship Between Biomass Consumption and Economic Growth
2.1.5 The Relationship Between Biomass Consumption and Carbon Dioxide
2.1.6 Relationship Among Variables Within the Extended Kuznets Curve
2.1.7 Arising Criticism of the Concept of Biomass
2.2 Related Theories
2.2.1 Environmental Kuznets Curve(EKC)
2.2.2 Energy Consumption–Economic Growth Hypothesis
2.2.3 Technological Diffusion Theory
CHAPTER3:CONCEPTUAL FRAMEWORK AND HYPOTHESIS DEVELOPMENT
3.1 The Conceptual Framework
3.2 Related Hypothesis
3.2.1 Biotechnology Related Hypothesis
3.2.2 Biomass Consumption and The Kuznets Curve in China And Japan
3.2.3 Biotechnological Innovations Adoption in China and Japan
3.2.4 Capitalization Related Hypothesis
3.2.5 Globalization Related Hypothesis
3.2.6 Trade Related Hypothesis
3.2.7 Urbanization Related Hypothesis
CHAPTER4:DATA AND METHODS
4.1 Profile of Study Area
4.2 Research Philosophy
4.3 Data Sources
4.3.1 Main Variables of the Study
4.3.2 Control Variables
4.4 Methods of Analysis
4.4.1 Procedure for Preliminary Analysis for Econometric Techniques
4.4.2 Procedure for Preliminary Analysis for Principal Component Analysis
4.5 Description of Methods for Stated Objectives and Hypothesis Testing
2 Emissions'> 4.5.1 Biomass Consumption,Biotechnology,Economic Growth And CO2 Emissions
4.5.2 The Impact of Biomass Consumption on the EKC Hypothesis
4.5.3 Biotechnological Innovations Adoption in China And Japan
4.5.4 The Causal Relationship of Bioeconomy and Economic Growth
4.5.5 Modelling the Artificial Neural Networks
4.5.6 Prediction of Direction of Causal Relationship Among the Variables
CHAPTER5:PRELIMINARY RESULTS
5.1 Preliminary Results from China
5.1.1 Descriptive Statistics
5.1.2 The Trend Analysis
5.1.3 Unite Root Test for China
5.1.4 Structural Break Test
5.1.5 Result from Principal Component Analysis(PCA)
5.1.6 Summary of Principal Component Analysis
5.2 Preliminary Results from Japan
5.2.1 Descriptive Statistics
5.2.2 The Trend Analysis
5.2.3 Unite Root Test for Japan
5.2.4 Result from Principal Component Analysis(PCA)
CHAPTER6:RESULTS AND DISCUSSIONS
6.1 Biomass Consumption,Biotechnology,GDP and CO2 Emissions in Japan and China
6.1.1 Auto-Regressive Distributed Lag(AARDL) and Nonlinear ARDL for China
6.1.2 Auto-Regressive Distributed Lag(ARDL)and Nonlinear ARDL for Japan
6.1.3 Estimated Short-Run and Long-Run Cointegrating Forms
6.2 The Causal Linkages Among Variables
6.2.1 The Causal Linkages Among Variables in China
6.2.2 The Causal Linkages Among Variable in Japan
6.3 The Impact of Biomass Consumption on the Extended Kuznets Curve
6.3.1 The Impact of Biomass Consumption on Extended Kuznets Curve in China
6.3.2 The Impact of Biomass Consumption on Extended Kuznets Curve in Japan
6.4 Biotechnology Adoption in China and Japan
6.4.1 Biotechnology Adoption in China
6.4.2 Biotechnology Adoption in Japan
6.5 The Contribution of Bioeconomy on the GDP of Japan
6.5.1 The Contribution of Bioeconomy on the GDP of Japan
6.5.2 The Contribution of Bioeconomy on the GDP of China
6.6 Prediction of Carbon Dioxide Emission and Economic
6.6.1 Determination of Predictors for Economic Growth and CO2 Emission Through Artificial Neural Network
6.6.2 Prediction of Economic Growth in China
6.6.3 Prediction of CO2 Emission in China
6.6.4 Prediction Economic Growth in Japan
6.6.5 Prediction of CO2 Emission in Japan
6.6.6 Impuls Response Function in China
6.6.7 Impuls Response Function in Japan
CHAPTER7:COMPARISON OF FINDINGS BETWEEN CHINA AND JAPAN
7.1 Comparison of Findings Between China and Japan
7.2.Comparison of Predictions
CHAPTER8:CONCLUSION AND LIMITATION OF THE STUDY
8.1 The Main Conclusions of the Study
8.2 Policy Implication of the Study
8.3 Limitation of the Study
References
Appendix1:List of Selected Bioeconomy Sectors
Appendix2:Matlab Codes for Neural Network
Appendix3:List of Publications
Acknowledgements
本文编号:2842858
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2842858.html