木质纤维素生物质与生物废弃物厌氧共消化提升甲烷产率的机理研究
发布时间:2020-10-18 04:14
通过预处理降低木质纤维素类生物质的致密结构、提高其生物降解能力,并进行厌氧发酵是一种行之有效的处置方法,不仅能够生产生物燃料,而且可以在很大程度上缓解严峻的环境问题。本论文研究了五种能够提高木质纤维素类稻草生物降解性能和甲烷产量的预处理方法。首先,经过蒸汽爆破预处理的玉米秸秆和稻草秸秆,降解率相比于未处理分别提高了40.0%和62.7%。第二,经过1.0% KOH溶液处理的稻草秸秆和1.5% KOH溶液处理的玉米秸秆,生物甲烷产量分别提升了 27.2%和49.9%。第三,本研究中采用了 1.5% KOH黑液(处理过程中产生的KOH废液)对玉米秸秆在20℃下进行预处理,发现能够有效去除木质素、提高厌氧发酵性能。使用黑液预处理的玉米秸秆所产沼气中甲烷加权平均含量以及甲烷累积产率与用KOH溶液处理的玉米秸秆并没有显著性差异,使用黑液预处理的玉米秸秆经厌氧发酵后所得的甲烷产量相比未预处理提升了 52.4%。第四,高温(60℃) KOH预处理能够显著地提高厌氧发酵效果,和未处理相比其甲烷产率提高了 56.4%。第五,高温KOH和蒸汽爆破联合预处理是本研究中效果最佳的预处理方法,其预处理过的玉米秸秆甲烷产率相比于未处理提高了 88.5%。此外,本研究还将KOH预处理过的稻草秸秆与鸡粪和餐厨垃圾进行了共发酵实验。相比于鸡粪或餐厨垃圾的单一发酵,预处理过的稻草秸秆与鸡粪或餐厨垃圾的共发酵对甲烷产率分别有7.3%和34.0%的提升。经过1.0% KOH预处理的稻草秸秆与鸡粪共发酵能够提升3.4 mL/g VS甲烷产率。餐厨垃圾与1.0%KOH预处理过的稻草秸秆混合发酵,由于氮平衡表现出了最佳的协同作用,使甲烷产率显著升高了 63.9mL/gVS。不同的动力学模型可以很好的模拟和预测原料经过蒸汽爆破预处理、KOH预处理、联合预处理和共发酵后的甲烷产率。本研究通过热重分析、X射线衍射、傅里叶变换红外光谱、原子力显微镜和扫描电子显微镜结合能量弥散X射线光谱等方法,比较并评估了预处理前后原料的物理化学性质变化,这些变化很好地解释了厌氧消化性能提高的原因。以上研究结果表明了预处理可以显著的改善木质纤维素类生物质的厌氧发酵性能、提高甲烷产率,研究归纳了几种预处理的方式并得到了有效数据,为今后通过预处理及厌氧发酵对木质纤维素类废弃物资源化利用的工业化应用提供了基础。
【学位单位】:北京化工大学
【学位级别】:博士
【学位年份】:2017
【中图分类】:X703
【文章目录】:
摘要
Abstract
1. INTRODUCTION
1.1. INTRODUCTION
1.2. ANAEROBIC DIGESTION (AD) PROCEDURE
1.3. ANAEROBIC MONO AND CODIGESTION
1.4. FACTORS AFFECTING AD PROCESS
1.5. TEMPERATURE
1.6. PH INFLUENCE
1.7. ORGANIC LOADING RATE (OLR)
1.8. TOXICITY AND INHIBITION
1.9. THE NATURE OF FEEDSTOCK
1.10. ANNUAL YIELD OF STRAW IN CHINA
1.11. ANNUAL YIELD OF ANIMALS MANURE IN CHINA
1.12. ANNUAL YIELD OF FOOD WASTE
1.13. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS
1.14. STEAM EXPLOSION PRETREATMENT
1.15. ALKALINE PRETREATMENT
1.16. OBJECTIVES
2. IMPROVE THE ANAEROBIC BIODEGRADABILITY BY COPRETREATMENT OFTHERMAL ALKALI AND STEAM EXPLOSION OF LIGNOCELLULOSIC WASTE
2.1. INTRODUCTION
2.2. MATERIALS AND METHODS
2.2.1. CS AND INOCULUM
2.2.2. THERMAL POTASSIUM HYDROXIDE PRETREATMENT
2.2.3. CO-PRETREATMENT OF THERMAL KOH AND SE (CPTPS)
2.2.4. BATCH AD TESTS
2.2.5. ANALYTICAL METHODS
2.2.6. THEORETICAL METHANE YIELDS
2.2.7. BIODEGRADABILITY (BD)
2.2.8. KINETICS ANALYSIS
2.3. RESULTS AND DISCUSSION
2.3.1. CHARACTERISTICS OF CS AND INOCULUM
2.3.2. ANAEROBIC DIGESTION OF THERMAL POTASSIUM HYDROXIDE TREATED CORNSTOVER
2.3.3. EFFECT OF CO-PRETREATMENT OF THERMAL KOH AND SE ON AD OF CS
2.3.4. DIGESTION PERFORMANCE OF UNTREATED AND PRETREATED CS
2.3.5. KINETICS ANALYSIS OF METHANE PRODUCTION
2.4. PHYSICOCHEMICAL CHANGES OF UNTREATED, TREATED CS BY SEM, FTIR, ANDXRD
2.4.1. SEM ANALYSIS
2.4.2. FTIR ANALYSIS
2.4.3. XRD ANALYSIS
2.5. CONCLUSION
3. POTENTIAL OF BLACK LIQUOR OF POTASSIUM HYDROXIDE TO PRETREAT CORNSTOVER FOR BIOMETHANE PRODUCTION
3.1. INTRODUCTION
3.2. MATERIALS AND METHODS
3.2.1. MATERIALS SUBSTRATE AND INOCULUM
3.2.2. POTASSIUM HYDROXIDE PRETREATMENT AND BLACK LIQUOR RECYCLING
3.2.3. ANAEROBIC DIGESTION TEST
3.2.4. ENERGY CONTENT
3.2.5. ANALYTICAL METHODS
3.2.6. THEORETICAL METHANE YIELD (TMY)
3.2.7. KINETICS MODEL
3.2.8. STATISTICAL ANALYSIS
3.3. RESULTS AND DISCUSSION
3.3.1. COMPOSITION OF CS AND INOCULUM
3.3.2. BIOGAS AND METHANE YIELD
3.3.3. METHANE CONTENT
3.3.4. SOLIDS RECOVERY AFTER PRETREATMENT AND DIGESTION PERFORMANCE
3.3.5. EVALUATION OF OVERALL PRODUCTION PERFORMANCE
3.4. PHYSICOCHEMICAL CHANGES OF UNTREATED,1.5% KOH-TREATED,AND BL-TREATED CS BY SEM, FTIR, AND XRD
3.4.1. SEM ANALYSIS
3.4.2. FTIR ANALYSIS
3.4.3. XRD ANALYSIS
3.4.4. KINETIC MODEL OF OVERALL METHANE PRODUCTION
3.5. WATER AND KOH CONSUMPTION IN BLACK LIQUOR PROCESS
3.6. CONCLUSION
4. STEAM EXPLOSION KINETIC EVALUATION FOR PRETREATMENT OF RICE STRAWFOR IMPROVING THE ANAEROBIC BIODEGRADABILITY OF BIOMETHANATION
4.1. INTRODUCTION
4.2. MATERIALS AND METHODS
4.2.1. BIOMASS AND INOCULUM
4.2.2. PRETREATMENT OF RS WITH SE
4.2.3. SEVERITY FACTOR(SF)
4.2.4. BATCH ANAEROBIC DIGESTION OF SE-TREATED RS
4.2.5. ANALYTICAL METHODS
4.2.6. THEORETICAL METHANE POTENTIAL YIELD AND BIODEGRADABILITY
4.2.7. BIOMETHANE MEASUREMENT AND KINETIC ANALYSIS
4.2.8. STATISTICAL ANALYSIS
4.3. RESULTS AND DISCUSSION
4.3.1. CHARACTERISTICS OF RS AND INOCULUM
4.3.2. AD BATCH TEST FOR SE PRETREATED RS EVALUATION
4.3.3. SEVERITY OF SE AND REGRESSION MODEL FOR TIME AND TEMPERATURE
4.3.4. DIGESTION STABILITY OF UNTREATED AND SE-TREATED RS
4.3.5. KINETICS OF METHANE PRODUCTION
4.3.6. STRUCTURAL CARBOHYDRATES AND LIGNIN EVALUATION IN SOLID FRACTIONOF UNTREATED,SE-TREATED RS
4.3.7. STRUCTURAL CARBOHYDRATES AND LIGNIN BIODEGRADATION OF UNTREATEDAND SE-TREATED RS AFTER AD
4.4. CONCLUSION
5. PARTICIPATION OF LIGNOCELLULOSIC COMPONENTS OF WET STATEPOTASSIUM HYDROXIDE PRETREATED RICE STRAW FOR BIOCHEMICAL METHANEPRODUCTION
5.1. INTRODUCTION
5.2. MATERIALS AND METHODS
5.2.1. FEEDSTOCK AND INOCULUM
5.2.2. WET STATE POTASSIUM HYDROXIDE PRETREATMENT OF RS
5.2.3. SOLID RECOVERY
5.2.4. BMP TEST OF FEEDSTOCK
5.2.5. THEORETICAL METHANE POTENTIAL YIELD
5.2.6. ANALYTICAL METHODS
5.2.7. BIODEGRADABILITY
5.2.8. KINETIC MODEL
5.2.9. DATA ANALYSIS
5.3. RESULTS AND DISCUSSION
5.3.1. CHARACTERISTIC OF FEEDSTOCK AND INOCULUM
5.3.2. EFFECTIVE SUBMERSION TIME OF PRETREATMENT
5.3.3. SOLID RECOVERY AND SOLUBLE BIOMASS AFTER PRETREATMENT
5.3.4. WET STATE KOH PRETREATMENT INFLUENCE ON AD OF RS
5.3.5. EVALUATION OF AD PROCESS STABILITY OF UNTREATED AND KOH TREATED
5.3.6. Kinetic model of methane production
5.3.7. EVALUATION OF LIGNOCELLULOSIC SOLID COMPONENTS OF RS BEFORE ANDAFTER AD
5.3.8. UTILIZATION SOLID FRACTION OF LIGNOCELLULOSIC COMPONENTS DURING THEAD
5.4. CONCLUSION
6. EVALUATION OF STEAM EXPLOSION AND POTASSIUM HYDROXIDEPRETREATMENT FOR ALTERATION OF PHYSICO-CHEMICAL CHARACTERISTICS OFRICE STRAW
6.1. NTRODUCTION
6.2. MATERIALS AND METHODS
6.2.1. FEEDSTOCK
6.2.2. SE PRETREATMENT
6.2.3. WET STATE POTASSIUM HYDROXIDE PRETREATMENT OF RS
6.2.4. XRD MEASUREMENT
6.2.5. FTIR MEASUREMENT
6.2.6. AFM MEASUREMENT
6.2.7. EDS-SEM MEASUREMENT
6.2.8. ANALYTICAL METHODS
6.3. RESULTS AND DISCUSSION
6.3.1 CHARACTERISTICS OF SUBSTRATE
6.3.2 FTIR ANALYSIS
6.3.3 AFM ANALYSIS
6.3.4 XRD ANALYSIS
6.3.5 EDS-SEM MEASUREMENT
6.4. CONCLUSION
7. ANAEROBIC CODIGESTION OF PRETREATED RICE STRAW WITH CHICKENMANURE AND FOOD WASTE TO ENHANCE THE METHANE YIELD
7.1. INTRODUCTION
7.2. MATERIALS AND METHODS
7.2.1. FEEDSTOCK AND INOCULUM
7.2.2. PRETREATMENT OF RS WITH POTASSIUM HYDROXIDE
7.2.3. ANAEROBIC MONO AND CODIGESTION TEST
7.2.4. ANALYTICAL METHODS
7.2.5. THEORETICAL METHANE YIELD (TMY)
7.2.6. KINETICS MODEL
7.3. RESULTS AND DISCUSSION
7.3.1. COMPOSITION OF UNTREATED AND 1.0% KOH-TREATED RS,FW,CM ANDINOCULUM
7.3.2. BMP TEST OF KOH-TREATED RS
7.3.3. CODIGESTION OF KOH-TREATED RS WITH CM
7.3.4. CODIGESTION OF KOH-TREATED RS WITH FW
7.3.5. SYNERGISM AFTER CODIGESTION OF 1.0% KOH-TREATED RS WITH FW AND CM
7.3.6. KINETIC MODEL OF METHANE PRODUCTION
7.4. CONCLUSION
8. CONCLUSIONS
REFERENCES
ACKNOWLEDGEMENT
LIST OF PUBLICATIONS
Muhammad Abdul Hanan Siddhu (Author)
Guangqing Liu (supervisor)
附件
【参考文献】
本文编号:2845784
【学位单位】:北京化工大学
【学位级别】:博士
【学位年份】:2017
【中图分类】:X703
【文章目录】:
摘要
Abstract
1. INTRODUCTION
1.1. INTRODUCTION
1.2. ANAEROBIC DIGESTION (AD) PROCEDURE
1.3. ANAEROBIC MONO AND CODIGESTION
1.4. FACTORS AFFECTING AD PROCESS
1.5. TEMPERATURE
1.6. PH INFLUENCE
1.7. ORGANIC LOADING RATE (OLR)
1.8. TOXICITY AND INHIBITION
1.9. THE NATURE OF FEEDSTOCK
1.10. ANNUAL YIELD OF STRAW IN CHINA
1.11. ANNUAL YIELD OF ANIMALS MANURE IN CHINA
1.12. ANNUAL YIELD OF FOOD WASTE
1.13. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS
1.14. STEAM EXPLOSION PRETREATMENT
1.15. ALKALINE PRETREATMENT
1.16. OBJECTIVES
2. IMPROVE THE ANAEROBIC BIODEGRADABILITY BY COPRETREATMENT OFTHERMAL ALKALI AND STEAM EXPLOSION OF LIGNOCELLULOSIC WASTE
2.1. INTRODUCTION
2.2. MATERIALS AND METHODS
2.2.1. CS AND INOCULUM
2.2.2. THERMAL POTASSIUM HYDROXIDE PRETREATMENT
2.2.3. CO-PRETREATMENT OF THERMAL KOH AND SE (CPTPS)
2.2.4. BATCH AD TESTS
2.2.5. ANALYTICAL METHODS
2.2.6. THEORETICAL METHANE YIELDS
2.2.7. BIODEGRADABILITY (BD)
2.2.8. KINETICS ANALYSIS
2.3. RESULTS AND DISCUSSION
2.3.1. CHARACTERISTICS OF CS AND INOCULUM
2.3.2. ANAEROBIC DIGESTION OF THERMAL POTASSIUM HYDROXIDE TREATED CORNSTOVER
2.3.3. EFFECT OF CO-PRETREATMENT OF THERMAL KOH AND SE ON AD OF CS
2.3.4. DIGESTION PERFORMANCE OF UNTREATED AND PRETREATED CS
2.3.5. KINETICS ANALYSIS OF METHANE PRODUCTION
2.4. PHYSICOCHEMICAL CHANGES OF UNTREATED, TREATED CS BY SEM, FTIR, ANDXRD
2.4.1. SEM ANALYSIS
2.4.2. FTIR ANALYSIS
2.4.3. XRD ANALYSIS
2.5. CONCLUSION
3. POTENTIAL OF BLACK LIQUOR OF POTASSIUM HYDROXIDE TO PRETREAT CORNSTOVER FOR BIOMETHANE PRODUCTION
3.1. INTRODUCTION
3.2. MATERIALS AND METHODS
3.2.1. MATERIALS SUBSTRATE AND INOCULUM
3.2.2. POTASSIUM HYDROXIDE PRETREATMENT AND BLACK LIQUOR RECYCLING
3.2.3. ANAEROBIC DIGESTION TEST
3.2.4. ENERGY CONTENT
3.2.5. ANALYTICAL METHODS
3.2.6. THEORETICAL METHANE YIELD (TMY)
3.2.7. KINETICS MODEL
3.2.8. STATISTICAL ANALYSIS
3.3. RESULTS AND DISCUSSION
3.3.1. COMPOSITION OF CS AND INOCULUM
3.3.2. BIOGAS AND METHANE YIELD
3.3.3. METHANE CONTENT
3.3.4. SOLIDS RECOVERY AFTER PRETREATMENT AND DIGESTION PERFORMANCE
3.3.5. EVALUATION OF OVERALL PRODUCTION PERFORMANCE
3.4. PHYSICOCHEMICAL CHANGES OF UNTREATED,1.5% KOH-TREATED,AND BL-TREATED CS BY SEM, FTIR, AND XRD
3.4.1. SEM ANALYSIS
3.4.2. FTIR ANALYSIS
3.4.3. XRD ANALYSIS
3.4.4. KINETIC MODEL OF OVERALL METHANE PRODUCTION
3.5. WATER AND KOH CONSUMPTION IN BLACK LIQUOR PROCESS
3.6. CONCLUSION
4. STEAM EXPLOSION KINETIC EVALUATION FOR PRETREATMENT OF RICE STRAWFOR IMPROVING THE ANAEROBIC BIODEGRADABILITY OF BIOMETHANATION
4.1. INTRODUCTION
4.2. MATERIALS AND METHODS
4.2.1. BIOMASS AND INOCULUM
4.2.2. PRETREATMENT OF RS WITH SE
4.2.3. SEVERITY FACTOR(SF)
4.2.4. BATCH ANAEROBIC DIGESTION OF SE-TREATED RS
4.2.5. ANALYTICAL METHODS
4.2.6. THEORETICAL METHANE POTENTIAL YIELD AND BIODEGRADABILITY
4.2.7. BIOMETHANE MEASUREMENT AND KINETIC ANALYSIS
4.2.8. STATISTICAL ANALYSIS
4.3. RESULTS AND DISCUSSION
4.3.1. CHARACTERISTICS OF RS AND INOCULUM
4.3.2. AD BATCH TEST FOR SE PRETREATED RS EVALUATION
4.3.3. SEVERITY OF SE AND REGRESSION MODEL FOR TIME AND TEMPERATURE
4.3.4. DIGESTION STABILITY OF UNTREATED AND SE-TREATED RS
4.3.5. KINETICS OF METHANE PRODUCTION
4.3.6. STRUCTURAL CARBOHYDRATES AND LIGNIN EVALUATION IN SOLID FRACTIONOF UNTREATED,SE-TREATED RS
4.3.7. STRUCTURAL CARBOHYDRATES AND LIGNIN BIODEGRADATION OF UNTREATEDAND SE-TREATED RS AFTER AD
4.4. CONCLUSION
5. PARTICIPATION OF LIGNOCELLULOSIC COMPONENTS OF WET STATEPOTASSIUM HYDROXIDE PRETREATED RICE STRAW FOR BIOCHEMICAL METHANEPRODUCTION
5.1. INTRODUCTION
5.2. MATERIALS AND METHODS
5.2.1. FEEDSTOCK AND INOCULUM
5.2.2. WET STATE POTASSIUM HYDROXIDE PRETREATMENT OF RS
5.2.3. SOLID RECOVERY
5.2.4. BMP TEST OF FEEDSTOCK
5.2.5. THEORETICAL METHANE POTENTIAL YIELD
5.2.6. ANALYTICAL METHODS
5.2.7. BIODEGRADABILITY
5.2.8. KINETIC MODEL
5.2.9. DATA ANALYSIS
5.3. RESULTS AND DISCUSSION
5.3.1. CHARACTERISTIC OF FEEDSTOCK AND INOCULUM
5.3.2. EFFECTIVE SUBMERSION TIME OF PRETREATMENT
5.3.3. SOLID RECOVERY AND SOLUBLE BIOMASS AFTER PRETREATMENT
5.3.4. WET STATE KOH PRETREATMENT INFLUENCE ON AD OF RS
5.3.5. EVALUATION OF AD PROCESS STABILITY OF UNTREATED AND KOH TREATED
5.3.6. Kinetic model of methane production
5.3.7. EVALUATION OF LIGNOCELLULOSIC SOLID COMPONENTS OF RS BEFORE ANDAFTER AD
5.3.8. UTILIZATION SOLID FRACTION OF LIGNOCELLULOSIC COMPONENTS DURING THEAD
5.4. CONCLUSION
6. EVALUATION OF STEAM EXPLOSION AND POTASSIUM HYDROXIDEPRETREATMENT FOR ALTERATION OF PHYSICO-CHEMICAL CHARACTERISTICS OFRICE STRAW
6.1. NTRODUCTION
6.2. MATERIALS AND METHODS
6.2.1. FEEDSTOCK
6.2.2. SE PRETREATMENT
6.2.3. WET STATE POTASSIUM HYDROXIDE PRETREATMENT OF RS
6.2.4. XRD MEASUREMENT
6.2.5. FTIR MEASUREMENT
6.2.6. AFM MEASUREMENT
6.2.7. EDS-SEM MEASUREMENT
6.2.8. ANALYTICAL METHODS
6.3. RESULTS AND DISCUSSION
6.3.1 CHARACTERISTICS OF SUBSTRATE
6.3.2 FTIR ANALYSIS
6.3.3 AFM ANALYSIS
6.3.4 XRD ANALYSIS
6.3.5 EDS-SEM MEASUREMENT
6.4. CONCLUSION
7. ANAEROBIC CODIGESTION OF PRETREATED RICE STRAW WITH CHICKENMANURE AND FOOD WASTE TO ENHANCE THE METHANE YIELD
7.1. INTRODUCTION
7.2. MATERIALS AND METHODS
7.2.1. FEEDSTOCK AND INOCULUM
7.2.2. PRETREATMENT OF RS WITH POTASSIUM HYDROXIDE
7.2.3. ANAEROBIC MONO AND CODIGESTION TEST
7.2.4. ANALYTICAL METHODS
7.2.5. THEORETICAL METHANE YIELD (TMY)
7.2.6. KINETICS MODEL
7.3. RESULTS AND DISCUSSION
7.3.1. COMPOSITION OF UNTREATED AND 1.0% KOH-TREATED RS,FW,CM ANDINOCULUM
7.3.2. BMP TEST OF KOH-TREATED RS
7.3.3. CODIGESTION OF KOH-TREATED RS WITH CM
7.3.4. CODIGESTION OF KOH-TREATED RS WITH FW
7.3.5. SYNERGISM AFTER CODIGESTION OF 1.0% KOH-TREATED RS WITH FW AND CM
7.3.6. KINETIC MODEL OF METHANE PRODUCTION
7.4. CONCLUSION
8. CONCLUSIONS
REFERENCES
ACKNOWLEDGEMENT
LIST OF PUBLICATIONS
Muhammad Abdul Hanan Siddhu (Author)
Guangqing Liu (supervisor)
附件
【参考文献】
相关期刊论文 前1条
1 付鹏;胡松;向军;孙路石;杨涛;张安超;张军营;;基于FTIR分析的稻草热解机理(英文)[J];Chinese Journal of Chemical Engineering;2009年03期
本文编号:2845784
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2845784.html