超重力强化技术在基于臭氧氧化工艺处理邻苯二胺废水中的应用
发布时间:2020-10-31 10:20
Higee为超重力技术的简称,是一种过程强化技术。最初由Ramshaw和Mallison于1971年提出用于分离过程。该技术通过使用能够产生比地球重力场大几个数量级的多相反应器(Higee设备)来实现。因此,在这种反应器内流动的气体和液相反应物能够被破碎成极小的液滴和液膜。此外,对于气-液反应体系,气体和液体湍流程度和界面更新频率在超重力环境下也会得到强化。这些因素都能够强化传质与混合性能。有机废水的处理是许多化学工业中的主要挑战,特别是染料、药物、油漆、肥料等生产工艺。这些工业生产过程中产生大量含有复杂的有机物的废水,这些有机物不仅难以被生物降解,而且具有毒性,会对环境和生态构成严重威胁。本论文采用超重力技术处理含邻苯二胺(o-PDA)废水。邻苯二胺(o-PDA)作为一种芳香胺,是许多化学工业废水中的主要成分。本论文提出采用臭氧氧化工艺来处理含有邻苯二胺废水。由于臭氧消耗速率较快,因此水溶液中的臭氧氧化过程主要受到臭氧-水体传质速率的限制。因此,本论文通过使用一种新型的超重力设备--定-转子反应器(RSR)来强化臭氧-水体的传质速率,从而提高o-PDA的降解效率(η)。同时,由于臭氧的选择性和在水中的溶解度低的问题,本论文还考察了其他的三种基于臭氧的氧化工艺:耦合使用臭氧和过氧化氢(O_3/H_2O_2)的工艺,耦合使用臭氧和亚铁离子(O_3/Fe~(2+))的工艺和耦合使用臭氧和通过亚铁离子激活过硫酸盐(O_3/Fe2 + /PS)的催化氧化工艺来强化氧化性能,从而提高o-PDA的降解效率。本论文系统考察了在不同工艺下,不同操作参数对η,化学需氧量(COD)和气相总体积传质系数(KGa)的影响。并分析比较在每个工艺方法中的最优操作条件。此外,通过确定降解过程的中间产物,来以进一步评价o-PDA降解的程度。并比较了搅拌釜反应器(STR)和RSR对o-PDA降解的效果。通过本论文的研究,主要得到了以下结论:在单独使用臭氧工工艺中,随着初始pH值、进口臭氧浓度(Ci)升高η随之升高;随着液体体积流量(L)的升高,η随之降低;随着温度(T)和转子转速(N)的升高,η先升高后降低。最优操作条件为:pH = 6.5和N =1000rpm。在该操作条件下,RSR中的η和COD降解率(CODR)要比STR高 109.0%和 114.0%。在O_3/H_2O_2工艺中,随着o-PDA初始浓度升高(CAO),KGa也随之升高,ηη随之降低;随着N的升高,η和KGa随之升高;随着T的升高,η和KGa先升高到达峰值后缓慢降低;随着H_2O_2的浓度(CH_2O_2)升高,η呈现先升高后降低的趋势,而KGa一直为上升趋势。对比实验结果显示:O_3/H_2O_2工艺中的η,KGa和CODR分别要比单独使用O_3工艺高出24.4, 31.6和25.2%。此外,通过分析中间产物揭示了 O_3/H_2O_2工艺的降解过程相对于单独使用O_3得到了强化。在O_3/Fe~(2+)/PS工艺中,随着PS的浓度(CPS)和N的升高,η随之升高;随着T,初始pH值和Fe~(2+)浓度(CFe~(2+))的升高,η先升高后降低。在同样的操作条件下,O_3/Fe~(2+)/PS工艺中的η和CODR可以达到98.7和82.6%,而O_3/Fe~(2+)工艺中的η和CODR为84.4和68.3%。综上所述,本论文提供一种氧化o-PDA和难降解有机物的过程强化方法。
【学位单位】:北京化工大学
【学位级别】:博士
【学位年份】:2017
【中图分类】:X78
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Literature Review
1.1 Introduction
1.2 Overview of Process Intensification Technology
1.2.1 Principles and Categories of PI
1.3 Overview of Higee Technology
1.3.1 Characteristics and Principle of Higee devices
1.3.2 Gas-Liquid mass transfer in RPB
1.3.3 Fluid Flow in RPB
1.3.4 Limitations of RPB
1.3.5 Structure and Principle of RSR
1.4 Advanced Oxidation Processes (AOPs)
1.4.1 Chemical Oxidation by Ozone
1.4.2 Trend of Ozone-Based Oxidation processes
1.5 Structure and Properties of o-phenylenediamine (o-PDA)
1.5.1 Sources and Significance of o-PDA
1.5.2 Trend and Status of Treatment of o-PDA
1.6 Research Objectives
1.6.1 Main Objective
1.6.2 Specific Objectives
Chapter 2 Treatment of Wastewater Containing o-PDA by Ozone in an RSR
2.1 Introduction
2.2 Experimental Section
2.2.1 Apparatuses and Reagents
2.2.2 Experimental Procedure
2.3 Oxidation Mechanism of o-PDA by Ozone
2.4 Analytical Methods
2.5 Results and Discussion
2.5.1 Effect of Initial pH
2.5.2 Effect of Rotation Speed
2.5.3 Effect of Liquid Volumetric Flow Rate
2.5.4 Effect of Temperature
2.5.5 Effect of Inlet Ozone Concentration
2.6 Comparison Experiment
2.7 Summary
Chapter 3 Ozonation of o-PDA in the Presence of Hydrogen Peroxide in anRSR
3.1 Introduction
3/H2O2'> 3.2 Ozonation Mechanism of o-PDA by O3/H2O2
3.3 Experimental Section
3.3.1 Materials and Procedure
3.4 Analytical Methods
3.5 Determination of Gas Phase Overall Volumetric Mass Transfer Coefficient
3.6 Results and Discussion
2 O2 Concentration'> 3.6.1 Effect of H2O2 Concentration
3.6.2 Effect of Initial o-PDA Concentration
3.6.3 Effect of Initial pH
3.6.4 Effect of Rotation Speed
3.6.5 Effect of Reaction Temperature
3.7 Comparison Experiment
3.8 Degradation Products
3.9 Summary
Chapter 4 Catalytic Ozonation of o-PDA with Persulfate ions activated byFerrous ions in an RSR
4.1 Introduction
2+'> 4.2 Ozonation Mechanism in the Presence of Fe2+
4.3 Activation Mechanism of PS ion by Fe2+
4.4 Experimental Section
4.4.1 Materials and Procedure
4.5 Analytical Methods
4.6 Results and Discussion
2+ Concentration'> 4.6.1 Effect of Fe2+ Concentration
4.6.2 Effect of Initial pH
4.6.3 Effect of PS Concentration
4.6.4 Effect of Rotation Speed of RSR
4.6.5 Effect of Temperature
4.7 Comparison Experiment
4.8 Intermediate Products of Degradation
4.9 Summary
Chapter 5 Conclusions and Suggestions
5.1 Conclusions
5.2 Suggestions
References
Acknowledgement
Research Publications
Introduction of Author and Supervisor
附件
【参考文献】
本文编号:2863817
【学位单位】:北京化工大学
【学位级别】:博士
【学位年份】:2017
【中图分类】:X78
【文章目录】:
摘要
Abstract
Nomenclature
Chapter 1 Literature Review
1.1 Introduction
1.2 Overview of Process Intensification Technology
1.2.1 Principles and Categories of PI
1.3 Overview of Higee Technology
1.3.1 Characteristics and Principle of Higee devices
1.3.2 Gas-Liquid mass transfer in RPB
1.3.3 Fluid Flow in RPB
1.3.4 Limitations of RPB
1.3.5 Structure and Principle of RSR
1.4 Advanced Oxidation Processes (AOPs)
1.4.1 Chemical Oxidation by Ozone
1.4.2 Trend of Ozone-Based Oxidation processes
1.5 Structure and Properties of o-phenylenediamine (o-PDA)
1.5.1 Sources and Significance of o-PDA
1.5.2 Trend and Status of Treatment of o-PDA
1.6 Research Objectives
1.6.1 Main Objective
1.6.2 Specific Objectives
Chapter 2 Treatment of Wastewater Containing o-PDA by Ozone in an RSR
2.1 Introduction
2.2 Experimental Section
2.2.1 Apparatuses and Reagents
2.2.2 Experimental Procedure
2.3 Oxidation Mechanism of o-PDA by Ozone
2.4 Analytical Methods
2.5 Results and Discussion
2.5.1 Effect of Initial pH
2.5.2 Effect of Rotation Speed
2.5.3 Effect of Liquid Volumetric Flow Rate
2.5.4 Effect of Temperature
2.5.5 Effect of Inlet Ozone Concentration
2.6 Comparison Experiment
2.7 Summary
Chapter 3 Ozonation of o-PDA in the Presence of Hydrogen Peroxide in anRSR
3.1 Introduction
3/H2O2'> 3.2 Ozonation Mechanism of o-PDA by O3/H2O2
3.3.1 Materials and Procedure
3.4 Analytical Methods
3.5 Determination of Gas Phase Overall Volumetric Mass Transfer Coefficient
3.6 Results and Discussion
2
3.6.2 Effect of Initial o-PDA Concentration
3.6.3 Effect of Initial pH
3.6.4 Effect of Rotation Speed
3.6.5 Effect of Reaction Temperature
3.7 Comparison Experiment
3.8 Degradation Products
3.9 Summary
Chapter 4 Catalytic Ozonation of o-PDA with Persulfate ions activated byFerrous ions in an RSR
4.1 Introduction
2+'> 4.2 Ozonation Mechanism in the Presence of Fe2+
4.4.1 Materials and Procedure
4.5 Analytical Methods
4.6 Results and Discussion
2+
4.6.2 Effect of Initial pH
4.6.3 Effect of PS Concentration
4.6.4 Effect of Rotation Speed of RSR
4.6.5 Effect of Temperature
4.7 Comparison Experiment
4.8 Intermediate Products of Degradation
4.9 Summary
Chapter 5 Conclusions and Suggestions
5.1 Conclusions
5.2 Suggestions
References
Acknowledgement
Research Publications
Introduction of Author and Supervisor
附件
【参考文献】
相关期刊论文 前6条
1 郑绍军;王瑜;朱瑞;谷永东;杨丹丹;蔡星伟;;人工合成类天然产物防污剂的研究进展[J];中国腐蚀与防护学报;2016年05期
2 孙润林;向阳;杨宇成;邹海魁;初广文;邵磊;陈建峰;;超重力旋转床液体流动的可视化研究[J];高校化学工程学报;2013年03期
3 张维;;流化床反应器过程强化技术(英文)[J];Chinese Journal of Chemical Engineering;2009年04期
4 栗秀萍;刘有智;李志强;王晓莉;;旋转填料床连续精馏实验研究(英文)[J];Chinese Journal of Chemical Engineering;2008年04期
5 ;SYNTHESIS AND APPLICATION OF NANOPARTICLES BY A HIGH GRAVITY METHOD[J];China Particuology Science and Technology of Particles;2005年Z1期
6 张军,郭锴,郭奋,竺洁松,郑冲;旋转床内液体流动的实验研究[J];高校化学工程学报;2000年04期
本文编号:2863817
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2863817.html