当前位置:主页 > 社科论文 > 生态环境论文 >

铁/铁氧化物改性复合吸附材料的制备及其除砷性能和机理研究

发布时间:2021-03-24 09:06
  近年来,砷污染已成为一个全球性的饮用水安全问题,全球有超过20000万人生活在砷污染高风险区域,造成严重的健康风险。砷元素在环境中以有机砷和无机砷两种形态存在。相关文献表明,有机砷化合物在水体中并不多见,其毒性一般比无机砷要小得多,而无机砷毒性高且广泛存在。基于此,本文的研究目标污染物是水体中以无机砷形态存在的As(Ⅲ)(或亚砷酸盐)和As(V)(或砷酸盐)。流行病学研究证明,人体长期接触砷能引起皮肤色素沉着、肝病,损害心血管和肾功能等,甚至引发各种类型的癌症,因此去除饮用水中的无机砷是公共卫生安全中的核心问题。近年来,众多学者开始使用传统的吸附方法去除污染水体中的砷。本文以来源广泛的蜂窝煤渣(HBC)和甜根子草生物质炭为载体,通过化学共沉淀法负载铁/铁氧化物后制备出复合吸附材料:负载铁的蜂窝煤渣(铁负载蜂窝煤渣,Fe-HBC),煅烧获得的蜂窝煤渣/Fe3O4复合材料(磁性蜂窝煤渣,MHBC)以及生物质炭/Fe3O4复合材料(磁性甜子根草生物质炭,MKGB)在内的三类复合吸附材料。基于HBC、Fe-HBC、MHBC、MKGB这四种吸附材料,通过静态批处理实验和柱吸附实验对水中As(Ⅲ)... 

【文章来源】:浙江大学浙江省 211工程院校 985工程院校 教育部直属院校

【文章页数】:171 页

【学位级别】:博士

【文章目录】:
Acknowledgements
Abbreviations
Abstract
Abstract(中文)
Chapter 1 General Introduction
    1.1. Background
    1.2. Objectives of the study
    1.3. Thesis framework
Chapter 2 Literature review
    2.1. Arsenic and arsenic species
    2.2. Geochemistry of arsenic
    2.3. Sources and mobilization of arsenic
    2.4. Arsenic toxicity
    2.5. Arsenic remediation technologies
        2.5.1. Oxidation
        2.5.2. Ion exchange
        2.5.3. Precipitation
        2.5.4. Separation
        2.5.5. Adsorption
        2.5.6. Other remediation processes
    2.6. Iron-oxides-amended adsorbents in batch and column experiments
        2.6.1. Honeycomb briquette cinders(HBC)-a cost-effective adsorbent
        2.6.2. Biochar-a sustainable source for environment clean-up
    2.7. Strategies to enhance arsenic remediation in batch and column studies
    2.8. Field scale arsenic remediation-review of the progress
Chapter 3 Evaluation of HBC and Fe-HBC for the adsorptive removal of As(V)from aqueoussolutions
    3.1. Graphical abstract
    3.2. Introduction
    3.3. Materials and methods
        3.3.1. Reagents
        3.3.2. Preparation of adsorbent
        3.3.3. Adsorption experiments
        3.3.4. Adsorbents characterization
        3.3.5. Analytical methods
    3.4. Results and discussion
        3.4.1. Characterizations of HBC and Fe-HBC
        3.4.2. Effect of adsorbent dose on As(Ⅴ)removal
        3.4.3. Effect of solution pH on As(Ⅴ)removal
        3.4.4. Adsorption isotherms
        3.4.5. Adsorption kinetics
        3.4.6. Effect of competing ions
    3.5. Conclusions
Chapter 4 Adsorptive removal of As(Ⅴ)and As(Ⅲ)in saturated sand filter containing amended adsorbents
    4.1. Graphical abstract
    4.2. Introduction
    4.3. Materials and methods
        4.3.1. Reagents
        4.3.2. Filter design and specification
        4.3.3. Preparation of adsorbent
        4.3.4. Analytical parameters and methods
        4.3.5. Influent water
        4.3.6. Intermittent operations and analysis of samples
        4.3.7. Recycling of spent adsorbents
    4.4. Results and discussion
        4.4.1. Removal of arsenic
        4.4.2. Variations of pH
        4.4.3. Influences of co-occurring ions on arsenic removal
        4.4.4. Desorption and regeneration of the adsorbent
        4.4.5. Arsenic removal using regenerated adsorbent
        4.4.6. Adsorption mechanisms
    4.5. Conclusions
Chapter 5 As(Ⅲ,Ⅴ)removal from aqueous solutions using magnetic honeycomb briquette cinders(MHBC):effect of calcination on adsorbents performance
    5.1. Graphical abstract
    5.2. Introduction
    5.3. Materials and methods
        5.3.1. Reagents
        5.3.2. Preparation of MHBC and calcined MHBC
        5.3.3. Batch adsorption experiments
        5.3.4. Adsorbents characterization
        5.3.5. Analytical methods
    5.4. Results and discussion
        5.4.1. Characterization results
        5.4.2. Effect of solution pH
        5.4.3. Effect of contact time and adsorption kinetics
        5.4.4. Effect of temperature
        5.4.5. Effect of phosphate anion on arsenic removal
    5.5. Conclusions
Chapter 6 Influence of calcination on magnetic honeycomb briquette cinders composite for theadsorptive removal of As(Ⅲ)in fixed-bed column
    6.1. Graphical abstract
    6.2. Introduction
    6.3. Materials and methods
        6.3.1. Reagents
        6.3.2. Preparation of MHBC and calcined MHBC
        6.3.3. Fixed-bed column studies
        6.3.4. Adsorbents characterization
        6.3.5. Analytical methods
    6.4. Results and discussion
        6.4.1. XRD analyses
        6.4.2. Column studies
        6.4.3. Desorption study
        6.4.4. As(Ⅲ)removal mechanisms
    6.5. Conclusions
Chapter 7 Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(Ⅲ,Ⅴ)adsorption from aqueous solutions
    7.1. Graphical abstract
    7.2. Introduction
    7.3. Materials and methods
        7.3.1. Reagents
        7.3.2. Preparation of MKGB
        7.3.3. Adsorption experiments
        7.3.4. Adsorbents characterization
        7.3.5. Analytical methods
    7.4. Results and discussion
        7.4.1. Characterization results
        7.4.2. Adsorption studies
        7.4.3. Adsorption isotherms
        7.4.4. Adsorption kinetics
        7.4.5. Effect of co-existing ions
        7.4.6. Desorption and regeneration
    7.5. Conclusions
Chapter 8 Conclusions and future perspectives
    8.1. Major findings
    8.2. Innovation
    8.3. Challenges and future perspectives
References
Publications



本文编号:3097457

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/3097457.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户86662***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com