当前位置:主页 > 社科论文 > 生态环境论文 >

铁配合物、黏土矿与铁氧化物引发的雌二醇光降解:乙二胺二琥珀酸的影响

发布时间:2021-04-25 06:32
  光化学降解是环境中污染物转化的重要途径,并且其降解效率较高。众所周知,Fe(Ⅲ)-多羧酸盐配合物具有很高的光催化活性,在阳光的作用下可经历快速光化学反应,生成强氧化性自由基,催化降解有机污染物。其中,Fe(III)-oxalate、Fe(III)-citrate的光化学性质得到了非常广泛和透彻的研究。目前,由于氨基多羧酸类配合物(APCAs)的广泛使用,并且在环境水体及土壤中均检出高浓度的APCAs, APCAs的研究引起了科学家们强烈的兴趣。氨基多羧酸类配合物具有多羧酸类配合物相似的化学行为。已有Fe(III)-EDTA、Fe(III)-NTA光化学反应的报道。乙二胺二琥珀酸(EDDS)是一种天然的氨基多羧酸,具有非常强的金属络合能力。由于EDDS具有安全和环境友好性,被提议作为EDTA的替代品用于土壤修复。EDDS能与铁形成稳定的配合物,有关Fe(III)-EDDS的物理化学性质已经有报道。但是,对于Fe(III)-EDDS的光化学性质还未见深入研究。黏土和铁矿物广泛存在于各种地质体中,它们具有特殊的晶体结构和表面带电性质。作为土壤、大气、水体漂浮颗粒和沉积物的主要成分之一,这些固... 

【文章来源】:武汉大学湖北省 211工程院校 985工程院校 教育部直属院校

【文章页数】:221 页

【学位级别】:博士

【文章目录】:
摘要
ABSTRACT
Acnkowledgements
CATALOGUE
Ⅰ-Introduction
Ⅱ-Bibliography study
    A-Clay and iron oxide minerals in the environment
        A-1 Properties of clay and iron oxides
            A-1-1 The structure and properties of clay
            A-1-2 Iron in clay minerals
            A-1-3 The structure and properties of iron-oxides
        A-2 Photochemical behavior of clay and iron oxide minerals
            A-2-1 Raw clay and iron oxides photocatalysis
            A-2-2 Heterogeneous Photo-Fenton-like catalysis
            A-2-3 Other modified clay/iron oxides photocatalysis
    B-Iron-carboxylate complex
        B-1 EDDS:one of naturally occurring aminopolycarboxylic acids (APCAs)
        B-2 Fe(Ⅲ)-EDDS
        B-3 The photochemistry of iron-carboxyate complex
    C-Endocrine disrupting compounds
        C-1 E2 in the environment
        C-2 E2 degradation
Ⅲ-Materials and methods
    A-Reagents
    B-Preparation of materials and solutions
        B-1-Synthesis of goethite
        B-2-Preparation of stock solutions
        B-3-Preparation of reaction solutions
    C-Irradiation
        C-1-Ferrioxalate actinometry
        C-2-Irradiation with monochromator
        C-3-Irradiation centered at 365 nm
        C-4-Irradiation with Metal halid lamp
    D-Analysis method
        D-1 Minerals
        D-2 Chemicals
            D-2-1 Spectroscopy methods
            D-2-2 Chromatographic methods
            D-2-3 Dosage methods
Ⅳ-Results and discussion
    Ⅳ-A Physicochemical property of E2, Fe(Ⅲ)-EDDS, and Minerals
        A-1 Property of 17β-estradiol
        A-2 Properties of Fe(Ⅲ)-EDDS
            A-2-1 Properties of EDDS
            A-2-2 Properties of Fe(Ⅲ)-EDDS
        A-3 Characterization of the minerals
    Ⅳ-B Photodegradation of E2 in the Fe(Ⅲ)-EDDS complexes solution
        B-1 Quantum yields of·OH formation in Fe(Ⅲ)-EDDS complex
            B-1-1 Effect of Fe(Ⅲ)-EDDS complex concentration
            B-1-2 Effect of pH
            B-1-3 Effect of wavelength
            B-1-4 Effect of oxygen
2+">            B-1-5 Comparison with the aquacomplex Fe(OH)2+
  •         B-2 The rate constants for the reaction of·OH with E2 and EDDS
            B-3 Photodegradation of E2 in the Fe(Ⅲ)-EDDS complex solutions
                B-3-1 Effect of Fe(Ⅲ)-EDDS concentration
                B-3-2 Effect of pH
                B-3-3 Effect of oxygen
                B-3-4 Effect of iron concentration
            B-4 Photoproducts
            Conclusions
        Ⅳ-C-Photochemical formation of hydroxyl radicals catalyzed by montmorillonite
            C-1 Oxidation of benzene to phenol
            C-2 Effect of clay concentration
            C-3 Effect of initial pH
            C-4 Effect of citrate ions
            C-5 Mechanism of hydroxyl radicals formation
                C-5-1 Charged surface of nano clay
                C-5-2 Free iron ions in clays
                C-5-3 Structural iron in the clays
            Conclusions
        IV-D Degradation of E2 photoinduced by KSF and KSF-EDDS
            D-1 Adsorption of E2 on KSF
            D-2 Photodegradation of E2 in KSF solutions
                D-2-1 Effect of KSF concentration on the degradation of E2
                D-2-2 Effect of pH on the degradation of E2
            D-3 Photodegradation of E2 in KSF solutions in the presence of EDDS
                D-3-1 Effect of KSF concentration on the degradation of E2
                D-3-2 Effect of pH on the photodegradation of E2
                D-3-3 Effect of EDDS concentration on the degradation of E2
                D-3-4 Effect of oxygen on the degradation of E2
                D-3-5 Effect of 2-propanol on the degradation of E2
                D-3-6 Effect of initial concentration of E2
            Conclusions
        IV-E Degradation of E2 photoinduced by NM and NM-EDDS
            E-1 Adsorption of E2 on NM
            E-2 Photodegradation of E2 in the NM suspensions
                E-2-1 Effect of the clay concentration on the photodegradation of E2
                E-2-2 Effect of pH on the photodegradation of E2
            E-3 Photodegradation of E2 in NM-EDDS suspensions
                E-3-1 Effect of NM concentration on the photodegradation of E2
                E-3-2 Effect of EDDS concentration on the degradation of E2
                E-3-3 Effect of pH on the degradation of E2
                E-3-4 Effect of oxygen on the degradation of E2
                E-3-5 Effect of 2-propanol on the photodegradation of E2
                E-3-6 Effect of the initial E2 concentration
            Conclusions
        Ⅳ-F Degradation of E2 photoinduced by Goethite and Goethite-EDDS
            F-1 Adsorption of E2 on Goethite
            F-2 Photodegradation of E2 in the Goethite suspensions
                F-2-1 Effect of Goethite concentration on the photodegradation of E2
                F-2-2 Effect of pH on the photodegradation of E2
            F-3 Photodegradation of E2 in the Goethite-EDDS complex solutions
                F-3-1 Effect of Goethite concentration on the photodegradation of E2
                F-3-2 Effect of EDDS concentration on the photodegradation of E2
                F-3-3 Effect of pH on the photodegradation of E2
                F-3-4 Effect of oxygen on the photodegradation of E2
                F-3-5 Effect of 2-propanol on the photodegradation of E2
                F-3-6 Comparison of the homogenous and heterogeneous reaction
                F-3-7 Effect of initial concentration of E2
            Conclusions
    Ⅴ-General conclusions
    Ⅵ-APPENDIX
        Ⅵ-1 List of tables
        Ⅵ-2 List of figures
        Ⅵ-3 List of scheme
    Ⅶ-REFERENCES
    Paper published


    【参考文献】:
    期刊论文
    [1]Extraction of copper from sewage sludge using biodegradable chelant EDDS[J]. ZHANG Lihua~(1,2) ZHU Zhiliang~(1,*) ZHANG Ronghua~1 ZHENG Chengsong~3 ZHANG Hua~1 QIU Yanling~1 ZHAO Jianfu~1 1.State Key Laboratory of PoUution Control and Resource Reuse,Tongji University,Shanghai 200092,China.2.Department of Chemistry and Biology Engineering,Sanming College,Sanming,Fufian 365004,China 3.Sanming Environment Protection Bureau,Sanming,Fujian 365004,China.  Journal of Environmental Sciences. 2008(08)
    [2]Chemical composition and surface charge properties of montmorillonite[J]. 刘晓文,胡敏,胡岳华.  Journal of Central South University of Technology. 2008(02)
    [3]二氧化钛/蒙脱土复合光催化剂制备及对亚甲基蓝的催化降解[J]. 陈小泉,李芳柏,李新军,柳松,古国榜.  土壤与环境. 2001(01)



    本文编号:3158891

  • 资料下载
    论文发表

    本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/3158891.html


    Copyright(c)文论论文网All Rights Reserved | 网站地图 |

    版权申明:资料由用户10655***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com