耐压减轻材料及低密度水泥浆体系研究
本文关键词:耐压减轻材料及低密度水泥浆体系研究 出处:《西南石油大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着勘探开发速度的加快,高温、低压易漏井越来越多,低密度水泥浆体系是解决低压易漏地层固井的主要方法。而常规低密度水泥浆减轻材料:粉煤灰、微硅、膨润土、矿渣等对水泥浆密度降低能力有限;氮气、普通漂珠低密度水泥浆体系耐压性能较差;空心玻璃微珠水泥浆体系成本较高,不能推广使用。针对以上问题,本文研制出承压能力达到60MPa的低成本复合减轻剂,开展了抗180℃高温,密度在1.20g/cm3~1.60g/cm3之间的低密度水泥浆体系研究。基于颗粒实际堆积形态,建立三级颗粒紧密堆积模型和四级不确定粒径颗粒紧密堆积模型。由三级颗粒级配模型得到三级级配颗粒粒径比为1:0.464:0.268;研制出堆积体系空隙度测试装置,并对堆积体系空隙度进行测试。研究结果表明,一级大颗粒、二级中颗粒、三级小颗粒体积比为6:1:3时三级颗粒紧密堆积体堆积最为紧密系空隙度最小,为34.01%。对颗粒紧密堆积体系内三级颗粒体积比进行微调,得出大、中、小三级颗粒体积比在[7~10]:[1~2]:[2~2.5]之间时堆积体系空隙度差别较小,颗粒堆积较为紧密。将理论模型与实验验证相结合,研制出密度范围分别为0.87g/cm3~1.04g/cm3、1.01g/cm3~1.23g/cm3,承压能力分别为40MPa、60MPa,适用水泥浆密度范围在1.20g/cm3~1.60g/cm3之间的复合减轻剂JQ-1和JQ-2,其成本低于1.69万元/吨。通过大量实验证明该种复合减轻剂与常规油井水泥浆添加剂配伍性良好,具有较强的抗高温性能。本文还利用研制的复合减轻剂开展了密度为1.20g/cm3、1.40g/cm3、1.60g/cm3的低密度水泥浆体系承压能力、高温稳定性、流变性、水泥石渗透率、水泥石在高温下的强度发展情况等性能研究。研究结果表明,该类低密度水泥浆体系具有较好的抗高温稳定性,浆体上下密度差小于0.02g/cm3;流变性能较好,流动度大于19cm;API失水量小,低于60ml;在循环温度140℃~180℃条件下,稠化时间在154min~527min之间可调,稠化曲线良好,基本为直角稠化;水泥石抗压强度高,密度为1.20g/cm2、1.40g/cm、1.60g/cm3三种低密度水泥浆体系75℃水浴箱常压养护2d后抗压强度分别为16.28MPa、26.46MPa、30.25MPa;论文还对三种低密度水泥浆抗高温性能、水泥石抗压强度及胶结强度受温度影响性能、水泥石渗透率等性能进行研究。结果表明,复合减轻剂低密度水泥浆体系常规性能与常规密度水泥浆体系常规性能差别不大,可以提高低密度水泥浆体系固井质量,降低固井成本,提高水泥石抗腐蚀能力,延长油气井寿命。
[Abstract]:With the exploration and development speed, high temperature, low pressure and leakage wells increasing, low density cement slurry system is the main method to solve the formations. While the conventional low density cement slurry to reduce material: fly ash, micro silica, bentonite, slag on cement slurry density reduction ability is limited; nitrogen, ordinary pressure resistance microsphere low density cement slurry system is poor; hollow glass bead cement slurry system with high cost, can not promote the use of. To solve the above problems, a low cost compound reducing agent with pressure capacity of 60MPa has been developed, and a low density cement slurry system, which is resistant to 180 degree high temperature and 1.20g/cm3 to 1.60g/cm3 density, has been developed. Based on the actual accumulation of particles, a compact accumulation model of three grade particles and a compact accumulation model of four level uncertain particle size particles are established. From the three level particle size distribution model, the three gradation particle size ratio is 1:0.464:0.268, and the porosity measurement device of the packing system is developed, and the void fraction of the stacking system is tested. The research results show that when the first particle size, the two stage middle particle size and the three stage small particle volume ratio are 6:1:3, the three grade particle compact accumulation body is the most compact and the porosity is the smallest, 34.01%. Fine grain volume ratio of three stage particles in dense packing system is fine tuned. It is concluded that the particle size ratio of large, middle and small particles is between [7 to 10]: [1 to 2]: [2 ~ 2.5], and the void fraction of packing system is relatively small, and particles are closely packed. The theoretical model combined with experiment, developed the density range was 0.87g/cm3 ~ 1.04g/cm3, 1.01g/cm3 ~ 1.23g/cm3, the bearing capacity were 40MPa, 60MPa, application of cement slurry density in the range of 1.20g/cm3 ~ 1.60g/cm3 between JQ-1 and JQ-2 composite reducing agent, which cost less than 16 thousand and 900 yuan / ton. Through a large number of experiments, it has been proved that the compound reducing agent has good compatibility with the conventional oil well cement slurry additive and has strong resistance to high temperature. In this paper, the performance of low density cement slurry with density of 1.20g/cm3, 1.40g/cm3 and 1.60g/cm3 was studied by using the developed compound reducing agent, including pressure capacity, high temperature stability, rheology, permeability of cement paste and strength development of cement paste at high temperature. The research results show that the low density cement slurry system has good stability at high temperature, slurry on the density of less than 0.02g/cm3; good rheological properties, fluidity is greater than 19cm; API loss is small, less than 60ml; in the circulating temperature 140 to 180 DEG C conditions, adjustable thickening time is 154min ~ 527min well, the thickening curve, as a basic right angle thickening; the compressive strength of cement stone is high, the density of 1.20g/cm2, 1.40g/cm, 1.60g/cm3 three kinds of low density cement slurry system of 75 DEG C water bath pressure maintenance 2D compressive strength were 16.28MPa, 26.46MPa, 30.25MPa; study the three kinds of low density cement slurry at high temperature the performance, the compressive strength of cement stone and cement properties and temperature affected the strength of cement stone permeability performance. The results show that the conventional performance of compound reducing agent low density cement slurry system is not much different from that of conventional density cement slurry system. It can improve cementing quality of low density cement slurry system, reduce cementing cost, improve the corrosion resistance of cement paste and extend the life of oil and gas well.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE256
【相似文献】
相关期刊论文 前10条
1 张津林,熊英,曹会英,薛新生;抗高温低密度水泥浆体系的研究[J];钻井液与完井液;2000年05期
2 孙富全;侯薇;靳建洲;高永会;;超低密度水泥浆体系设计和研究[J];钻井液与完井液;2007年03期
3 肖华珍;;增强增塑低密度水泥浆体系的研究与应用[J];胜利油田职工大学学报;2008年01期
4 罗杨;陈大钧;许桂莉;万伟;陈安;;高强度超低密度水泥浆体系实验研究[J];石油钻探技术;2009年05期
5 宫英杰;李洪俊;张恒;聂海峰;王贵宏;尹伟;;低密度水泥浆充填增强材料粒径分布设计方法[J];石油天然气学报;2010年01期
6 刘庆旺;陈金秋;;粉煤灰复合低密度水泥浆体系研究[J];科学技术与工程;2010年21期
7 毕宏利;;坂土低密度水泥浆及应用[J];化工管理;2013年04期
8 田野;代丹;方国伟;王雪山;张福铭;;提高粉煤灰低密度水泥浆体系低温性能的研究[J];科学技术与工程;2013年21期
9 廖刚,杨远光;高稳定性高强度低密度水泥浆的研究[J];钻采工艺;1997年04期
10 宋碧涛,杨远光,郭小阳,陈英;蛭石配制低密度水泥浆实验研究[J];西南石油学院学报;2001年04期
相关重要报纸文章 前2条
1 记者 张云普 通讯员 夏江洲;超低密度水泥浆体系在庆深气田首次应用成功[N];中国石油报;2006年
2 通讯员 杨玲 柳建;新疆局低密度水泥浆固井技术应用成功[N];中国石油报;2003年
相关硕士学位论文 前10条
1 王洪亮;高温防漏低密度水泥浆体系的研究与应用[D];东北石油大学;2015年
2 王凯;彰武地区中深井低密度水泥浆体系研究[D];西南石油大学;2016年
3 岳跃展;耐压减轻材料及低密度水泥浆体系研究[D];西南石油大学;2017年
4 张庆军;低密度水泥浆体系设计及应用[D];大庆石油学院;2007年
5 陈金秋;抗高温高强低密度水泥浆体系研究[D];东北石油大学;2011年
6 刘存鹏;超低密度水泥浆体系研究与应用[D];长江大学;2012年
7 贾维君;新型高强低密度水泥浆体系研究[D];大庆石油学院;2009年
8 赵红;增强增韧低密度水泥浆体系的研究[D];中国石油大学;2007年
9 岳家平;高温大温差低密度水泥浆体系研究与应用[D];西南石油大学;2012年
10 于海平;漂珠+微硅低密度水泥浆配方的实验研究[D];中国石油大学;2007年
,本文编号:1340871
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1340871.html