超声产气介导释药的PLGA中空微球诊疗一体化研究
本文关键词:超声产气介导释药的PLGA中空微球诊疗一体化研究 出处:《郑州大学》2017年硕士论文 论文类型:学位论文
更多相关文章: PLGA 中空微球 诊疗一体化 超声空化效应 超声靶向微泡爆破
【摘要】:恶性肿瘤严重威胁人类生命健康,传统的化疗药物体内消除快、低靶向性,副作用大,而且肿瘤诊断和治疗是相互分离的两次医疗过程,令患者难以耐受。因此为了实现抗肿瘤药物诊疗一体化,我们构建了靶向肿瘤细胞、在靶部位浓集释药、有效治疗肿瘤的同时具备诊断功能的给药体系,即共载产气剂NaHCO3和抗癌药阿霉素的聚乳酸-羟基乙酸中空微球-PLGA-DOX@NaHCO3 HMs诊疗一体化给药体系。本课题研究内容主要分为三部分:第一部分:构建PLGA-DOX@NaHCO3 HMs给药体系采用复乳溶剂挥发法制备内腔包载阿霉素和NaHCO3的PLGA中空微球。透射电镜可见PLGA-DOX@NaHCO3 HMs中空结构,壳厚约420nm。光学显微镜观察其外观均匀分散,圆整规则。平均粒径分布在1~2μm,电位为(-21.8±1.31)mV,紫外分光光度法法测定其包封率和载药量分别为(39.18±2.20)%和(3.92±0.22)%。包载NaHCO3的制剂-PLGA-DOX@NaHCO3 HMs相比于未包封NaHCO3制剂——PLGA-DOX HMs可显著增强体内外超声显影效果,具备pH响应释药特性和更高的累积释药量,同时在超声作用下累积释药量明显增加。第二部分:研究PLGA-DOX@NaHCO3 HMs给药体系的体外细胞毒性及靶向性以乳腺癌细胞MCF-7为模型细胞考察PLGA-DOX@NaHCO3 HMs的体外细胞毒性和靶向性。MTT结果显示制剂组细胞抑制率均显示良好的浓度及时间依赖性,PLGA-DOX@NaHCO3 HMs相比于PLGA-DOX HMs细胞存活率明显下降,尤其在施加超声治疗后细胞抑制率进一步增加。细胞摄取定性结果显示肿瘤细胞更加倾向于摄取具备pH敏感性能的PLGA-DOX@NaHCO3 HMs制剂组,且其与PLGA-DOX HMs相比DOX在细胞核部位蓄积量明显增多。流式细胞术检测细胞摄取定量实验更加证实了包封NaHCO3的PLGA HMs更加有助于DOX在细胞内蓄积和滞留。细胞凋亡实验结果显示PLGA-DOX@NaHCO3 HMs相比于PLGA-DOX HMs细胞总凋亡率明显增加,在施加超声治疗后超声治疗与化疗双重作用使细胞总凋亡率更高,显示其良好的抗肿瘤细胞效果。第三部分:研究PLGA-DOX@NaHCO3 HMs给药体系的药物代谢动力学研究以昆明种雌性小鼠为模型动物,分别以瘤内原位注射方式给予PLGA-DOX@NaHCO3 HMs,静脉注射方式给予原料药DOX,以高效液相色谱法为定量方法测定阿霉素在血浆中含量的方式考察制剂和原料药中药物在小鼠体内的药物代谢动力学行为。分析结果得到制剂组和原料药组在小鼠体内药物代谢动力学行为差异显著。制剂组相比于原料药DOX,采用瘤内原位注射可将更多药物蓄积于肿瘤部位,减少药物经血渗透入正常组织,降低对正常组织的损伤。其半衰期和平均滞留时间明显增加,提高了生物利用度,延长了DOX作用时间。第四部分:PLGA-DOX@NaHCO3 HMs给药体系的药效学研究采用S180荷瘤昆明小鼠为动物模型,以瘤内注射制剂组和静脉注射原料药组的方式连续给药,以小鼠体重、相对瘤体积、瘤重、肿瘤形态等作为评价指标,考察了PLGA-DOX@NaHCO3 HMs对小鼠生命质量的影响以及抑制肿瘤生长的效果。实验结果得出PLGA-DOX@NaHCO3 HMs相比于未包封产气剂NaHCO3的制剂具有较好的治疗效果,尤其在合并局部超声治疗后,通过超声靶向微泡爆破技术引发气体空化效应使得肿瘤治疗效果更加显著,与原料药DOX治疗效果相当(P0.05)。联合组织病理学切片结果表明DOX对肿瘤生长抑制作用显著,但其存在严重的心肾毒性。制剂组对各组织无明显的毒副作用,同时在合并超声作用后,因化疗与超声治疗的协同作用,肿瘤治疗效果显著提高,使得荷瘤小鼠生命质量得以改善,毒副作用降低,安全性提高。本课题成功构建的PLGA-DOX@NaHCO3 HMs给药体系,经体内外考察得知,该体系具备pH敏感性能,可在肿瘤微酸环境下产生CO2气体用于超声显影定位诊断肿瘤,同时引发空化效应抑制肿瘤生长;在进行超声治疗后,通过超声靶向微泡爆破引发空化效应和声孔效应有效增加靶区药物蓄积浓度,提高肿瘤治疗效果,实现化疗、超声治疗、诊断于一体的的目的。
[Abstract]:Malignant tumor is a serious threat to human life and health. The traditional chemotherapeutic drugs eliminate the fast and low targeting in vivo, and the side effects are large. Moreover, tumor diagnosis and treatment are the two separate medical processes, which make it difficult for patients to tolerate. Therefore, in order to achieve anti-tumor drug treatment of integration, we construct simultaneous targeting of tumor cells, in the target site concentration release, effective treatment of tumors with the diagnosis function of the administration system, namely carrying gas producing agent NaHCO3 and anticancer drug doxorubicin PLGA microspheres -PLGA-DOX@NaHCO3 HMs hollow theranostics administration system. The research contents are divided into three parts: the first part is to build PLGA-DOX@NaHCO3 HMs drug delivery system, and prepare PLGA hollow microspheres loaded with adriamycin and NaHCO3 by emulsion evaporation. PLGA-DOX@NaHCO3 HMs hollow structure was found by transmission electron microscopy, and the thickness of the shell was about 420nm. The optical microscope shows that its appearance is evenly distributed and round the rules. The average particle size distribution was 1~2 mu m and the potential was (-21.8 + 1.31) mV. The encapsulation efficiency and drug loading of UV spectrophotometry were (39.18 + 2.20)% and (3.92 + 0.22)% respectively. The NaHCO3 -PLGA-DOX@NaHCO3 HMs, compared with the unencapsulated NaHCO3 preparation, PLGA-DOX HMs, significantly enhanced the ultrasound imaging effect in vivo and in vitro, and had pH responsive release characteristics and higher cumulative release dose. Meanwhile, the cumulative release amount increased significantly under ultrasound. The second part: We studied the cytotoxicity and targeting of PLGA-DOX@NaHCO3 HMs delivery system in vitro, and investigated the cytotoxicity and targeting of PLGA-DOX@NaHCO3 HMs in vitro with breast cancer cell MCF-7 as a model cell. MTT results showed that the cell inhibition rate in the preparation group showed a good concentration and time dependence. The survival rate of PLGA-DOX@NaHCO3 HMs was significantly lower than that of PLGA-DOX HMs cells, especially after the application of ultrasound treatment, the cell inhibition rate increased further. The qualitative results of cell uptake showed that tumor cells tended to ingest the PLGA-DOX@NaHCO3 HMs preparations with pH sensitive properties, and compared with PLGA-DOX HMs, DOX accumulation in nuclear sites increased significantly. Flow cytometry detection of cell uptake quantitative tests confirmed that the PLGA HMs encapsulated in NaHCO3 was more conducive to the accumulation and retention of DOX in the cells. The apoptosis test results showed that the total apoptosis rate of PLGA-DOX@NaHCO3 HMs increased significantly compared with PLGA-DOX HMs cells. After ultrasound treatment, the dual effect of ultrasound therapy and chemotherapy made the total apoptosis rate of cells higher, showing its good anti-tumor effect. The third part: To study the pharmacokinetics study of drug delivery system PLGA-DOX@NaHCO3 HMs to female Kunming mice as the model animal, respectively by injection of tumor in situ within the given PLGA-DOX@NaHCO3 HMs, intravenous injection of given drug DOX, determined by HPLC on preparations and raw materials in the plasma concentration of adriamycin in drugs pharmacokinetic behavior of mice for quantitative method. The results of the analysis showed that the pharmacokinetics of the drug group and the drug group were significantly different in the mice. In the preparation group, compared with the crude drug DOX, intratumoral injection in situ can accumulate more drugs in the tumor site, reduce the penetration of drugs into normal tissues and reduce the damage to normal tissues. The half-life and the average retention time increased significantly, increasing the bioavailability and prolonging the time of DOX action. The fourth part: the research on the S180 tumor in Kunming mice animal model for the efficacy of PLGA-DOX@NaHCO3 HMs administration system, with intratumoral injection preparation group and intravenous injection of API Group continuously administered to mice weight, relative tumor volume, tumor weight, tumor morphology as the evaluation index, the effects of PLGA-DOX@NaHCO3 HMs on the quality of life of mice and the effect of inhibiting tumor growth. The experimental results show that PLGA-DOX@NaHCO3 HMs compared to the preparation of non encapsulated gas producing agent NaHCO3 has a better therapeutic effect, especially in combination with local ultrasonic treatment, causing gas cavitation effect makes the tumor treatment effect is more significant to the micro bubble blasting technology by ultrasonic target, equivalent treatment medicine raw materials DOX (P0.05). The results of the joint histopathological section showed that DOX had a significant inhibitory effect on tumor growth, but it had serious cardionrenal toxicity. The preparation group had no obvious toxic and side effects on all tissues. Meanwhile, after the combination of ultrasound, the therapeutic effect of tumor was significantly improved due to the synergistic effect of chemotherapy and ultrasound treatment, so that the quality of life of tumor bearing mice was improved, the toxicity and side effects were reduced, and the safety was improved. This study successfully constructed PLGA-DOX@NaHCO3 HMs administration system, the external and internal analysis, the system has pH sensitive performance in tumor acidic environment to produce the CO2 gas for ultrasound imaging diagnosis of tumors, and cause cavitation effect to inhibit tumor growth; in ultrasound after treatment by ultrasound targeted microbubble cavitation caused by blasting the effect of sound hole effect effectively increase the drug target volume concentration, improve the tumor treatment, chemotherapy, ultrasonic treatment, achieve the purpose of diagnosis in one.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R943;R96
【相似文献】
相关期刊论文 前10条
1 黄莹莹;;Biodegradable Polylactide-co-glycolide (PLGA) Thin Films Prepared by Electrospray and Pressurized Spray Deposition[J];Journal of Wuhan University of Technology-Materials Science;2005年S1期
2 王志清;刘卫;徐辉碧;杨祥良;;载三氧化二砷的PEG-PLGA隐性纳米粒的制备及体外研究(英文)[J];Chinese Journal of Chemical Engineering;2007年06期
3 ;Effect of Excipients on Stability and Structure of rhCuZn-SOD Encapsulated in PLGA Microspheres[J];Chemical Research in Chinese Universities;2004年03期
4 郭晓东;;Surface Modification of Biomimetic PLGA-(ASP-PEG) Matrix with RGD-Containing Peptide:a New Non-Viral Vector for Gene Transfer and Tissue Engineering[J];Journal of Wuhan University of Technology(Materials Science Edition);2006年03期
5 陈剑;樊新;周忠诚;阮建明;;PLGA材料仿生改性的最新进展[J];粉末冶金材料科学与工程;2008年06期
6 ;Preparation and mineralization of PLGA/Gt electrospun fiber mats[J];Chinese Science Bulletin;2009年08期
7 李双燕;;PLGA组织工程支架材料的研究与展望[J];国外丝绸;2009年02期
8 郝杰;郑启新;;Biomineralization of the Surface of PLGA-(ASP-PEG) Modified with the K_(16) and RGD-containing Peptide[J];Journal of Wuhan University of Technology(Materials Science Edition);2009年05期
9 ;Preparation of Tolterodine Metabolite Loaded Biodegradable PLGA Microspheres[J];Chemical Research in Chinese Universities;2010年01期
10 ;Comparison of BSA Release Behavior from Electrospun PLGA and PLGA/Chitosan Membranes[J];Chemical Research in Chinese Universities;2011年04期
相关会议论文 前10条
1 郑强;潘志军;薛德挺;李杭;李建兵;;纳米PLGA/HA复合物和骨髓基质干细胞在软骨修复中的应用[A];2009年浙江省骨科学学术年会论文汇编[C];2009年
2 王汉杰;苏文雅;廖振宇;王生;常津;;PLGA/Liposome核壳纳米粒子的制备[A];天津市生物医学工程学会第30次学术年会暨生物医学工程前沿科学研讨会论文集[C];2010年
3 王光林;吴辉;;联合静电纺丝法和转筒接收法制备PLGA—胶原—丝素纳米神经导管[A];第六届西部骨科论坛暨贵州省骨科年会论文汇编[C];2010年
4 赵洁;全大萍;廖凯荣;伍青;;含不同侧氨基密度的ASP-PEG-PLGA的合成与表征[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
5 黄艳霞;任天斌;张丽红;吕凯歌;蒋欣泉;潘可风;任杰;;PLGA/NHA-RGD复合材料的制备及性能研究[A];2006年上海市医用生物材料研讨会论文汇编[C];2006年
6 ;Synthesis of PLGA Labeled with ~(125)I[A];2006年上海市医用生物材料研讨会论文汇编[C];2006年
7 李艳辉;崔媛;张慧敏;关秀文;;利用等离子体技术在PLGA表面固定胶原的研究[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 何树;毕龙;刘建;扈刚;孟国林;董鑫;郝赋;赵轶男;;新型PLGA/HMS-HA复合微球载体支架对兔骨髓间充质干细胞生物学行为的影响[A];中华医学会第七次全国骨质疏松和骨矿盐疾病学术会议论文汇编[C];2013年
9 ;Preparation of PLGA Ultrasound Microbubble Loaded Hematoporphyrin and optimization of formulation[A];中华医学会第十次全国超声医学学术会议论文汇编[C];2009年
10 李志宏;武继民;汪鹏飞;陈学忠;黄姝杰;关静;张西正;;BMP/PLGA缓释微球的制备与体外释放性能[A];第七届中国功能材料及其应用学术会议论文集(第4分册)[C];2010年
相关重要报纸文章 前3条
1 记者 白毅;合成温敏型PLGA-PEG-PLGA嵌段共聚物[N];中国医药报;2006年
2 尹东锋 钟延强;聚合物 药物 制备工艺 附加剂[N];中国医药报;2006年
3 李博;“人造红细胞”[N];大众卫生报;2009年
相关博士学位论文 前10条
1 李玉华;载阿伦磷酸钠PLGA微球的磷酸钙骨水泥复合组织工程骨修复兔股骨髁骨缺损的实验研究[D];山东大学;2015年
2 周璇;RGD靶向微泡与载药微球在肝脏创伤渗血诊断和治疗中的研究[D];中国人民解放军医学院;2015年
3 陶春;可注射镶嵌载生长因子壳聚糖微球的PLGA多孔复合微球支架的研究[D];第二军医大学;2015年
4 鲍文;靶向纳米载药系统DNR-PLGA-PLL-PEG-Tf治疗恶性血液病的体内、体外研究[D];东南大学;2015年
5 王晨晖;装载蛋白药物的PCADK/PLGA混合微球研究及在重组人生长激素中的应用[D];吉林大学;2016年
6 卢明子;载血红蛋白PEG-PLGA纳米粒子的构建、生物学作用及其靶向性能的研究[D];中国人民解放军军事医学科学院;2016年
7 张皓轩;载辛伐他汀PLGA微球/磷酸钙组织工程骨的生物相容性和成骨活性的研究[D];山东大学;2016年
8 李青;新型高效靶向ROS响应的载药纳米粒子系统在口腔鳞癌治疗中的研究[D];山东大学;2016年
9 齐峰;粒径均一的PLGA颗粒制备及在长效缓释体系和Pickering乳液中的应用[D];中国科学院研究生院(过程工程研究所);2015年
10 刘苒;转铁蛋白修饰的新型多聚物载药纳米粒的研制及靶向逆转白血病多药耐药的体外研究[D];东南大学;2015年
相关硕士学位论文 前10条
1 侯瑞瑞;超声产气介导释药的PLGA中空微球诊疗一体化研究[D];郑州大学;2017年
2 阳刚;复合肌腱修复材料—载细胞用防粘连性隔离/支架型PLGA膜的体外研制[D];中南大学;2010年
3 唐冠男;微流控技术原位合成多形貌PLGA/TiO_2复粒子及其体外药物释放的研究[D];华南理工大学;2015年
4 李文秀;形貌可控的PLGA/PCL复合粒子的制备及体外降解性能的基础研究[D];华南理工大学;2015年
5 黄卓颖;重组人表皮生长因子PLGA纳米粒经皮治疗大鼠糖尿病溃疡的作用研究[D];福建中医药大学;2015年
6 闻继杰;含胺基修饰beta-环糊精的可降解两亲性聚酯的合成及其对蛋白质和抗癌药物的控制释放[D];天津理工大学;2015年
7 王翠伟;基于点击化学制备PCL/PEG两亲性共网络聚合物以及不同支臂PLGA作为疫苗载体的初步研究[D];北京协和医学院;2015年
8 王共喜;PLA/AT纳米复合材料的制备与性能及PLGA纤维的表面改性[D];复旦大学;2014年
9 刘青;植入体材料与PLGA载药微球的复合研究[D];西南交通大学;2015年
10 张科技;蚕丝-PLGA支架的生物相容性及力学性能的研究[D];浙江省医学科学院;2015年
,本文编号:1346507
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1346507.html