聚丙烯腈基导电纤维和微纳结构聚苯胺的制备及其性能研究
本文关键词:聚丙烯腈基导电纤维和微纳结构聚苯胺的制备及其性能研究 出处:《中原工学院》2017年硕士论文 论文类型:学位论文
更多相关文章: 光催化 聚丙烯腈纤维 CuS Ni_3S_4 聚苯胺 超级电容器
【摘要】:日益严重的水污染和能源欠缺问题使得人们正极力开发有效的办法来解决这一问题。其中,半导体光催化降解技术因能彻底降解污染物、无二次污染、反应条件温和等优点,使其在缓解污染水问题方面具有极大的应用前景。将具有光催化活性物质负载于纤维织物上,制备出兼具优良催化活性和机械性能的多功能纤维是未来走向工业实际应用的一种重要研究方向。针对能源危机问题,除了开发绿色新能源之外,能源储存技术也受到国家的高度重视。电化学电容器,作为一种新型的能源储存设备,因其庞大的潜在价值,吸引了科研工作者的研究兴趣。本文重点研究了以聚丙烯腈纤维为基底,采用化学螯合、溶剂热法制备了PAN@CuS导电纤维、PAN@CuS@Ni_3S_4功能化纤维织物。首先,通过扫描电镜(SEM)、傅里叶转换红外光谱(FT-IR)、X射线衍射(XRD)分别对所制备的材料做了表征,并探究其在光催化降解有机废水上的应用。其后,又采用电化学沉积法合成了微纳米结构聚苯胺。通过循环伏安法、恒定电流充放电法、交流阻抗法等手段对所制备材料的电化学性能做了测试,主要工作如下:(1)采用化学螯合法制备聚丙烯腈导电纤维,优化后的反应条件为络合剂的浓度5mg/ml,反应温度95℃,反应时间135 min,硫酸铜的浓度25 mg/ml。在拉伸实验中,较低浓度的络合剂环境下,络合剂浓度的增加使得制备的聚丙烯腈纤维断裂拉伸应变增加。当使用过量的络合剂时,因改变聚丙烯腈纤维的固有结构使其断裂应变又有所降低。然而,络合剂的浓度和硫酸铜的浓度对所制备样品拉伸强度却没有太大的影响。(2)采用溶剂热法制备PAN@CuS@Ni_3S_4催化剂,经过溶剂热后PAN纤维发生了部分解取向,导致其特征衍射峰降低。SEM、Mapping分析得出,在PAN纤维表面均匀负载着致密的硫化铜薄层。当引入硫化镍后生成了高度有序的菠萝状微纳米异质结结构。通过控制反应时间探讨了其生长机理,得出6 h所得纤维表面负载的催化剂结构较为规整有序。然后,改变反应溶剂体系,例水、无水乙醇、乙二醇、异丙醇探究溶剂对其形貌的影响。在对亚甲基蓝和罗丹明B的光催化降解实验中,相比于纯PAN纤维和PAN@CuS,PAN@CuS@Ni_3S_4因其独特形貌和生成的异质结结构发挥协同作用进而表现出优异的催化降解活性。紫外光照4 h后就能将有机染料基本降解完全,降解效率高达97%。PAN纤维表面结构经过5次循环催化后基本无坍塌现象,仍保持有90%的催化降解效率。(3)电化学法制备微纳米结构聚苯胺的研究,分别对所制样品做了SEM、FT-IR、XRD等表征。其中,PANI-H_2SO_4呈类珊瑚状微纳结构,PANI-CSA呈三维网状纤维结构,而PANI-H_3PO_4则呈现出与PANI-H_2SO_4相类似的珊瑚状。不过PANI-H_3PO_4短棒的直径略大于PANI-H_2SO_4。循环伏安测试中,三维网状纤维结构的PANI-CSA在30 mV/s较大扫速下曲线基本不发生变化,体现出较好的电容特性。在0.5 A/g的电流密度下,放电比容量为321 F/g,当电流密度增大到5 A/g时也有220 F/g的放电比容量。在交流阻抗和循环稳定性测试中,PANI-CSA电极与其他两种电极相比在电化学过程显现出较低的电阻,并且0.5 A/g电流密度下经过1000次循环后容量保持率仍然高达95%表现更为优异的电化学活性。
[Abstract]:Water pollution and energy shortage is becoming more and more serious so that people are trying to develop an effective way to solve the problem. Among them, the photocatalytic degradation technology for degradation of pollutants, no two pollution, mild reaction conditions and other advantages, which has great application prospect in alleviating water pollution problems will have. The load on the fabric of photocatalytic active material, preparation of multifunctional fiber has excellent catalytic activity and mechanical properties is an important research direction of future industrial application. Aiming at the problem of energy crisis, in addition to the development of new green energy, energy storage technology is also highly valued by the state. The electrochemical capacitor as a new type of energy storage equipment, because of its huge potential value, has attracted research interest of researchers. This paper focuses on the research of polyacrylonitrile fiber with medium At the end, using chemical chelation, PAN@CuS conductive fiber by solvothermal method, PAN@CuS@Ni_3S_4 functional fiber fabric. First of all, by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X ray diffraction (XRD) of the prepared materials were characterized, and explore its application in photocatalytic degradation the organic waste water. And then, by electrochemical deposition of micro nano structure of polyaniline was synthesized by cyclic voltammetry, constant current charge discharge method, AC impedance method is tested on the electrochemical performance of as prepared materials, the main work is as follows: (1) preparation of conductive PAN fiber by chemical chelating reaction method. The optimized concentration of 5mg/ml as complexing agent, reaction temperature 95 C, reaction time 135 min, 25 mg/ml. copper sulfate concentration in the tensile test, low concentration of complexing agent environment, increase the concentration of complexing agent makes preparation The polyacrylonitrile fiber tensile strain increases. When using excessive complexing agent, because of the inherent structure change of polyacrylonitrile fiber the fracture strain decreased. However, the concentration of copper sulfate and complexing agent on the preparation of sample, the tensile strength is not much affected. (2) the preparation of PAN@CuS@Ni_3S_4 catalyst solvothermal method, after solvent heat PAN fiber was deorientation, leads to the characteristic diffraction peaks decreased.SEM, Mapping analysis, on the surface of PAN fiber with uniform load of copper sulfide thin tight. When the introduction of nickel sulfide after the formation of a highly ordered pineapplelike micro nano heterojunction structure. By controlling the reaction time of the growth mechanism of the 6 h fiber obtained from surface supported catalyst structure is ordered. Then, the reaction solvent, water, ethanol, ethylene glycol, isopropanol Solution Research Effects of surfactant on the morphology. The photocatalytic degradation of methylene blue and Rhodamine B, compared to the pure PAN fiber and PAN@CuS, PAN@CuS@Ni_3S_4 because of its unique morphology and structure of heterojunction generate synergy and exhibit excellent photocatalytic activity under ultraviolet irradiation. After 4 h can be degraded completely organic dyes and the degradation efficiency is as high as the surface structure of 97%.PAN fiber after 5 cycles after the catalytic no collapse phenomenon, still maintain the photocatalytic degradation efficiency 90%. (3) electrochemical preparation of micro nano structure of polyaniline, respectively on the prepared sample was SEM, FT-IR, XRD and PANI-H_2SO_4 were characterized. The coral the shape of the micro nano structure, PANI-CSA a three-dimensional reticular fiber structure, while PANI-H_3PO_4 showed a similar PANI-H_2SO_4 coral. But PANI-H_3PO_4 short rod diameter is slightly larger than the PANI-H_2SO_4. cyclic voltammetry test In the curve of three-dimensional reticular fiber structure of the PANI-CSA in the 30 mV/s large scanning rate does not change, reflecting the good capacitance characteristics. At the current density of 0.5 A/g, the discharge capacity is 321 F/g, when the current density increased to 5 A/g when a discharge specific capacity of 220 F/g. The AC impedance and the cycle stability test, the PANI-CSA electrode and the other two electrodes compared to show low resistance in the electrochemical process, and the current density of 0.5 A/g after 1000 cycles the capacity retention rate is still as high as 95% more excellent electrochemical activity.
【学位授予单位】:中原工学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ342.3;O633.21
【参考文献】
相关期刊论文 前10条
1 邱少龙;苏晓磊;贾艳;李新林;罗莹;边慧;;涤纶导电纤维的制备及性能研究[J];应用化工;2017年02期
2 郑少明;赖祥辉;林本术;;导电纤维的发展与应用[J];中国纤检;2016年09期
3 冉奋;杨云龙;刘影;孔令斌;康龙;;V_2O_5氧化聚合制备多孔片状聚苯胺及其电化学性能[J];电子元件与材料;2016年09期
4 孙同庆;吕春祥;李永红;赵宇飞;隋敏;邵伟;;硼酸改性对聚丙烯腈纤维预氧化的影响[J];合成纤维;2016年06期
5 蔡倩文;王金凤;陈慰来;;纬编针织柔性传感器结构及其导电性能[J];纺织学报;2016年06期
6 延亚峰;宋春雨;曹敏悦;季志刚;葛明桥;巨安奇;;复合型导电纤维的制备及性能[J];高分子材料科学与工程;2016年06期
7 周烨;张莲莲;周金香;章莉莉;王锡琼;邹专勇;;导电纤维制备现状及其产业发展中面临的问题[J];上海纺织科技;2016年05期
8 皇甫晨晨;邓炳耀;刘庆生;辛春莉;;电纺聚丙烯腈纤维毡的制备与性能表征[J];化工新型材料;2016年05期
9 徐惠;蒲金娟;陈泳;刘健;;Ag~+掺杂聚苯胺的制备及其电容特性研究[J];电化学;2016年01期
10 孙晓文;杨鹏;张文光;;掺杂磺酸聚苯胺/碳纳米管复合膜电极制备及其应用[J];上海交通大学学报;2016年02期
,本文编号:1415506
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1415506.html